Back to Search
Start Over
Fractional virus epidemic model on financial networks
- Source :
- Open Mathematics, Vol 14, Iss 1, Pp 1074-1086 (2016)
- Publication Year :
- 2016
- Publisher :
- De Gruyter, 2016.
-
Abstract
- In this study, we present an epidemic model that characterizes the behavior of a financial network of globally operating stock markets. Since the long time series have a global memory effect, we represent our model by using the fractional calculus. This model operates on a network, where vertices are the stock markets and edges are constructed by the correlation distances. Thereafter, we find an analytical solution to commensurate system and use the well-known differential transform method to obtain the solution of incommensurate system of fractional differential equations. Our findings are confirmed and complemented by the data set of the relevant stock markets between 2006 and 2016. Rather than the hypothetical values, we use the Hurst Exponent of each time series to approximate the fraction size and graph theoretical concepts to obtain the variables.
- Subjects :
- Financial networks
General Mathematics
fractional calculus
01 natural sciences
010305 fluids & plasmas
Differential transform method
Differential Transform Method
Network Modelling
Stock Market Network
Caputo Fractional Derivative
0103 physical sciences
QA1-939
65c20
010306 general physics
26a33
Mathematics
05c82
network modelling
caputo fractional derivative
differential transform method
Fractional calculus
62p05
97m30
Fractional Calculus
stock market network
Epidemic model
Mathematical economics
Subjects
Details
- Language :
- English
- ISSN :
- 23915455
- Volume :
- 14
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- Open Mathematics
- Accession number :
- edsair.doi.dedup.....924f0c98d085d4d1f60e94f070d49222