Back to Search
Start Over
Spatial organisation plasticity reduces disease infection risk in rock-paper-scissors models
- Publication Year :
- 2022
- Publisher :
- arXiv, 2022.
-
Abstract
- We study a three-species cyclic game system where organisms face a contagious disease whose virulence may change by a pathogen mutation. As a responsive defence strategy, organisms' mobility is restricted to reduce disease dissemination in the system. The impact of the collective self-preservation strategy on the disease infection risk is investigated by performing stochastic simulations of the spatial version of the rock-paper-scissors game. Our outcomes show that the mobility control strategy induces plasticity in the spatial patterns with groups of organisms of the same species inhabiting spatial domains whose characteristic length scales depend on the level of dispersal restrictions. The spatial organisation plasticity allows the ecosystems to adapt to minimise the individuals' disease contamination risk if an eventual pathogen alters the disease virulence. We discover that if a pathogen mutation makes the disease more transmissible or less lethal, the organisms benefit more if the mobility is not strongly restricted, thus forming large spatial domains. Conversely, the benefits of protecting against a pathogen causing a less contagious or deadlier disease are maximised if the average size of groups of individuals of the same species is significantly limited, reducing the dimensions of groups of organisms significantly. Our findings may help biologists understand the effects of dispersal control as a conservation strategy in ecosystems affected by epidemic outbreaks.<br />Comment: 8 pages, 8 figures
- Subjects :
- Statistics and Probability
Applied Mathematics
Populations and Evolution (q-bio.PE)
FOS: Physical sciences
General Medicine
Pattern Formation and Solitons (nlin.PS)
Models, Biological
Nonlinear Sciences - Pattern Formation and Solitons
Quantitative Biology - Quantitative Methods
Nonlinear Sciences - Adaptation and Self-Organizing Systems
General Biochemistry, Genetics and Molecular Biology
Biological Physics (physics.bio-ph)
Modeling and Simulation
FOS: Biological sciences
Humans
Physics - Biological Physics
Quantitative Biology - Populations and Evolution
Adaptation and Self-Organizing Systems (nlin.AO)
Ecosystem
Quantitative Methods (q-bio.QM)
Subjects
Details
- Database :
- OpenAIRE
- Accession number :
- edsair.doi.dedup.....926173cadcf3c5325848c2e6338e4120
- Full Text :
- https://doi.org/10.48550/arxiv.2209.00584