Back to Search Start Over

Continuous-range tunable multilayer frequency-selective surfaces using origami and inkjet printing

Authors :
Manos M. Tentzeris
Glaucio H. Paulino
Larissa S. Novelino
Syed Abdullah Nauroze
Source :
Proceedings of the National Academy of Sciences of the United States of America
Publication Year :
2018
Publisher :
National Academy of Sciences, 2018.

Abstract

Significance Conventional reconfigurable electrical and radio frequency (RF) structures commonly used in applications involving real-time reconfigurability in response to fast varying operational scenarios require specialized substrates or complex electrical circuits. Origami-based RF reconfigurable components and modules offer a solution featuring unique properties. First, they enable reconfigurability over continuous-state ranges (as opposed to discrete states). Second, they do not require specialized mechanical support for multilayer frequency-selective surface structures. Moreover, deployable origami-based RF structures can achieve large surface reconfigurability ratios from folded to unfolded states. Finally, these structures allow for independent control of multiple figures of merit: bandwidth, frequency of operation, and angle of incidence.<br />The tremendous increase in the number of components in typical electrical and communication modules requires low-cost, flexible and multifunctional sensing, energy harvesting, and communication modules that can readily reconfigure, depending on changes in their environment. Current subtractive manufacturing-based reconfigurable systems offer limited flexibility (limited finite number of discrete reconfiguration states) and have high fabrication cost and time requirements. Thus, this paper introduces an approach to solve the problem by combining additive manufacturing and origami principles to realize tunable electrical components that can be reconfigured over continuous-state ranges from folded (compact) to unfolded (large surface) configurations. Special “bridge-like” structures are introduced along the traces that increase their flexibility, thereby avoiding breakage during folding. These techniques allow creating truly flexible conductive traces that can maintain high conductivity even for large bending angles, further enhancing the states of reconfigurability. To demonstrate the idea, a Miura-Ori pattern is used to fabricate spatial filters—frequency-selective surfaces (FSSs) with dipole resonant elements placed along the fold lines. The electrical length of the dipole elements in these structures changes when the Miura-Ori is folded, which facilitates tunable frequency response for the proposed shape-reconfigurable FSS structure. Higher-order spatial filters are realized by creating multilayer Miura-FSS configurations, which further increase the overall bandwidth of the structure. Such multilayer Miura-FSS structures feature the unprecedented capability of on-the-fly reconfigurability to different specifications (multiple bands, broadband/narrowband bandwidth, wide angle of incidence rejection), requiring neither specialized substrates nor highly complex electronics, holding frames, or fabrication processes.

Details

Language :
English
ISSN :
10916490 and 00278424
Volume :
115
Issue :
52
Database :
OpenAIRE
Journal :
Proceedings of the National Academy of Sciences of the United States of America
Accession number :
edsair.doi.dedup.....9272793fe68832ff6daa82c2bf1a0e9c