Back to Search Start Over

Drag and lift forces on a rigid sphere immersed in a wall-bounded linear shear flow

Authors :
Pengyu Shi
Roland Rzehak
Jacques Magnaudet
Dirk Lucas
Helmholtz-Zentrum Dresden-Rossendorf (HZDR)
Technische Universität Dresden = Dresden University of Technology (TU Dresden)
Institut de mécanique des fluides de Toulouse (IMFT)
Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Helmholtz-Zentrum Dresden-Rossendorf (GERMANY)
Technische Universität Dresden - TUD (GERMANY)
Institut de Mécanique des Fluides de Toulouse - IMFT (Toulouse, France)
Source :
Physical Review Fluids, Physical Review Fluids, American Physical Society, 2021, 6 (10), pp.104309. ⟨10.1103/physrevfluids.6.104309⟩, Physical Review Fluids 6(2021), 104309
Publication Year :
2021
Publisher :
HAL CCSD, 2021.

Abstract

We report on a series of fully resolved simulations of the flow around a rigid sphere translating steadily near a wall, either in a fluid at rest or in the presence of a uniform shear. Non-rotating and freely rotating spheres subject to a torque-free condition are both considered to evaluate the importance of spin-induced effects. The separation distance between the sphere and wall is varied from values at which the wall influence is weak down to gaps of half the sphere radius. The Reynolds number based on the sphere diameter and relative velocity with respect to the ambient fluid spans the range $0.1-250$, and the relative shear rate defined as the ratio of the shear-induced velocity variation across the sphere to the relative velocity is varied from $-0.5$ to $+0.5$, so that the sphere either leads the fluid or lags behind it. The wall-induced interaction mechanisms at play in the various flow regimes are analyzed qualitatively by examining the flow structure, especially the spanwise and streamwise vorticity distributions. Variations of the drag and lift forces at low-but-finite and moderate Reynolds number are compared with available analytical and semiempirical expressions, respectively. In more inertial regimes, empirical expressions for the two force components are derived based on the numerical data, yielding accurate fits valid over a wide range of Reynolds number and wall-sphere separations for both non-rotating and torque-free spheres.<br />Comment: 27 pages, 25 figures

Details

Language :
English
ISSN :
2469990X
Database :
OpenAIRE
Journal :
Physical Review Fluids, Physical Review Fluids, American Physical Society, 2021, 6 (10), pp.104309. ⟨10.1103/physrevfluids.6.104309⟩, Physical Review Fluids 6(2021), 104309
Accession number :
edsair.doi.dedup.....92848551ff436bf5f31706cdab85d865
Full Text :
https://doi.org/10.1103/physrevfluids.6.104309⟩