Back to Search Start Over

Hilbert's Tenth Problem in Coq

Authors :
Larchey-Wendling, Dominique
Forster, Yannick
Logic, Proof Theory and Programming (TYPES)
Department of Formal Methods (LORIA - FM)
Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire Lorrain de Recherche en Informatique et ses Applications (LORIA)
Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
Saarland University [Saarbrücken]
Herman Geuvers
ANR-16-CE91-0002,TICAMORE,Traduction et Découverte des Calculs pour les logiques Modales et dérivées(2016)
Source :
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019), 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, Jun 2019, Dortmund, Germany. pp.27:1--27:20, ⟨10.4230/LIPIcs.FSCD.2019.27⟩
Publication Year :
2019
Publisher :
HAL CCSD, 2019.

Abstract

International audience; We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations over natural numbers, in Coq's constructive type theory. To do so, we give the first full mechanisation of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable problem-in our case by a Minsky machine-is Diophantine. We obtain an elegant and comprehensible proof by using a synthetic approach to computability and by introducing Conway's FRACTRAN language as intermediate layer.

Details

Language :
English
Database :
OpenAIRE
Journal :
4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019), 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, 4th International Conference on Formal Structures for Computation and Deduction, FSCD 2019, Jun 2019, Dortmund, Germany. pp.27:1--27:20, ⟨10.4230/LIPIcs.FSCD.2019.27⟩
Accession number :
edsair.doi.dedup.....9319932fee1c96bbb09f9b3e2e085ebf
Full Text :
https://doi.org/10.4230/LIPIcs.FSCD.2019.27⟩