Back to Search Start Over

Acidic Preconditioning Protects Against Ischemia-Reperfusion Lung Injury Via Inhibiting the Expression of Matrix Metalloproteinase 9

Authors :
Yan Jiao
Zhangjie Jiang
Qing-Hua Peng
Liangchao Qu
Zhiping Song
Source :
Journal of Surgical Research. 235:569-577
Publication Year :
2019
Publisher :
Elsevier BV, 2019.

Abstract

Background Acidic preconditioning (APC) has been demonstrated to protect against ischemia-reperfusion (IR)-induced lung injury, which could occur during lung transplantation or cardiopulmonary bypass. However, the pathophysiological mechanisms underlying IR lung injury and APC protection are not completely understood. The key factors responsible for the protective effects of APC are not clear. In this study, bioinformatics was used to predict the potential key factor in IR lung injury and explore the important mediator of the APC protective effect in IR lung injury. Methods First, we screened GSE6730, which is related to both lung injury and IR in Gene Expression Omnibus, and STRING was used later to select the genes in GSE6730 needed in the future. Animal models were established and classified to validate the effect of matrix metalloproteinase 9 (MMP-9) on lung injury after IR by adding a selective inhibitor (4-phenoxyphenylsulfonyl) methylthiirane, MMP-9 inhibitor. Next, for better understanding of APC inhibition of the expression of MMP-9 in lung injury, assessment of lung tissues, Western blot analysis, and RNA extraction and reverse transcription quantitative polymerase chain reaction were conducted. Results MMP-9 was identified to be overexpressed after IR according to the analysis on GSE67370. MMP-9 was an unknown gene in relation to acute lung injury and found to be associated with interleukin (IL)-1B, IL-6, and IL-8. The expressions of these inflammatory factors, including MMP-9, were all elevated in IR. Furthermore, lung injury was ameliorated, and the level of MMP-9 was lower when an MMP-9 inhibitor, (4-phenoxyphenylsulfonyl) methylthiirane, was added. Compared with group IR, APC reversed the ischemia-induced lung injury, and the level of MMP-9 was lower, and the concentrations of IL-1β, IL-6, and IL-8 were decreased. Conclusions Our findings reveal a novel mechanism indicating that IR induces higher expression of MMP-9 in lung injury by increasing the expression of inflammation-related factors. APC might protect against IR lung injury by inhibiting the expression of MMP-9.

Details

ISSN :
00224804
Volume :
235
Database :
OpenAIRE
Journal :
Journal of Surgical Research
Accession number :
edsair.doi.dedup.....93372b5afb34831cda74082ddfaabd3f