Back to Search
Start Over
Tuning Ligand Concentration in Cu(0)-RDRP: A Simple Approach to Control Polymer Dispersity
- Source :
- ACS Polymers Au, ACS Polymers Au, 1 (3), ACS Polymers Au, Vol 1, Iss 3, Pp 187-195 (2021)
- Publication Year :
- 2021
- Publisher :
- American Chemical Society, 2021.
-
Abstract
- Cu(0)-reversible deactivation radical polymerization (RDRP) is a versatile polymerization tool, providing rapid access to well-defined polymers while utilizing mild reaction conditions and low catalyst loadings. However, thus far, this method has not been applied to tailor dispersity, a key parameter that determines the physical properties and applications of polymeric materials. Here, we report a simple to perform method, whereby Cu(0)-RDRP can systematically control polymer dispersity (Đ = 1.07–1.72), while maintaining monomodal molecular weight distributions. By varying the ligand concentration, we could effectively regulate the rates of initiation and deactivation, resulting in polymers of various dispersities. Importantly, both low and high dispersity PMA possess high end-group fidelity, as evidenced by MALDI-ToF-MS, allowing for a range of block copolymers to be prepared with different dispersity configurations. The scope of our method can also be extended to include inexpensive ligands (i.e., PMDETA), which also facilitated the polymerization of lower propagation rate constant monomers (i.e., styrene) and the in situ synthesis of block copolymers. This work significantly expands the toolbox of RDRP methods for tailoring dispersity in polymeric materials.<br />ACS Polymers Au, 1 (3)<br />ISSN:2694-2453
- Subjects :
- chemistry.chemical_classification
Ligand
Dispersity Control
Dispersity
02 engineering and technology
General Medicine
Polymer
010402 general chemistry
021001 nanoscience & nanotechnology
01 natural sciences
Molecular Weight Distributions
Article
0104 chemical sciences
Cu(0)-RDRP
Block Copolymers
Ligand Concentration
TP1080-1185
chemistry
Chemical engineering
Simple (abstract algebra)
Polymers and polymer manufacture
0210 nano-technology
Subjects
Details
- Language :
- English
- ISSN :
- 26942453
- Volume :
- 1
- Issue :
- 3
- Database :
- OpenAIRE
- Journal :
- ACS Polymers Au
- Accession number :
- edsair.doi.dedup.....9374adf0c6d7493e4e04cab90ecece02