Back to Search Start Over

Concerted diffusion of lipids in raft-like membranes

Authors :
Emppu Salonen
Ilpo Vattulainen
Touko Apajalahti
Markus S. Miettinen
Praveen Nedumpully Govindan
Perttu S. Niemelä
Siewert-Jan Marrink
Molecular Dynamics
Zernike Institute for Advanced Materials
Groningen Biomolecular Sciences and Biotechnology
Source :
Apajalahti, T, Niemela, P, Govindan, P N, Miettinen, M S, Salonen, E, Marrink, S J & Vattulainen, I 2010, ' Concerted diffusion of lipids in raft-like membrane ', Faraday Discussions, vol. 144, pp. 411-430 . https://doi.org/10.1039/B901487J, Apajalahti, T, Niemelä, P, Govindan, P N, Miettinen, M S, Salonen, E, Marrink, S-J & Vattulainen, I 2010, ' Concerted diffusion of lipids in raft-like membranes ', Faraday Discussions, vol. 144, no. 1, pp. 411-430 . https://doi.org/10.1039/b901487j, Faraday Discussions, 144, 411-430. ROYAL SOC CHEMISTRY
Publication Year :
2010

Abstract

Currently, there is no comprehensive model for the dynamics of cellular membranes. The understanding of even the basic dynamic processes, such as lateral diffusion of lipids, is still quite limited. Recent studies of one-component membrane systems have shown that instead of single-particle motions, the lateral diffusion is driven by a more complex, concerted mechanism for lipid diffusion (E. Falck et al., J. Am. Chem. Soc., 2008, 130, 44–45), where a lipid and its neighbors move in unison in terms of loosely defined clusters. In this work, we extend the previous study by considering the concerted lipid diffusion phenomena in many-component raft-like membranes. This nature of diffusion phenomena emerge in all the cases we have considered, including both atom-scale simulations of lateral diffusion within rafts and coarse-grained MARTINI simulations of diffusion in membranes characterized by coexistence of raft and non-raft domains. The data allows us to identify characteristic time scales for the concerted lipid motions, which turn out to range from hundreds of nanoseconds to several microseconds. Further, we characterize typical length scales associated with the correlated lipid diffusion patterns and find them to be about 10 nm, or even larger if weak correlations are taken into account. Finally, the concerted nature of lipid motions is also found in dissipative particle dynamics simulations of lipid membranes, clarifying the role of hydrodynamics (local momentum conservation) in membrane diffusion phenomena.

Details

ISSN :
13596640 and 13645498
Volume :
144
Database :
OpenAIRE
Journal :
Faraday discussions
Accession number :
edsair.doi.dedup.....93b6e8d2e9f56792af1f5dfc35a0fec5
Full Text :
https://doi.org/10.1039/B901487J