Back to Search Start Over

Towards a Robust Imprecise Linear Deconvolution

Authors :
Olivier Strauss
Agnès Rico
Image & Interaction (ICAR)
Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier (LIRMM)
Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM)
Equipe de Recherche en Ingénierie des Connaissances (ERIC)
Université Lumière - Lyon 2 (UL2)
Source :
Synergies of Soft Computing and Statistics for Intelligent Data Analysis, Synergies of Soft Computing and Statistics for Intelligent Data Analysis, Springer, pp.55-62, 2013, Advances in Intelligent Systems and Computing, ⟨10.1007/978-3-642-33042-1_7⟩, Synergies of Soft Computing and Statistics for Intelligent Data Analysis ISBN: 9783642330414, SMPS
Publication Year :
2013
Publisher :
HAL CCSD, 2013.

Abstract

International audience; Deconvolution consists of reconstructing a signal from blurred (and usually noisy) sensory observations. It requires perfect knowledge of the impulse response of the sensor. Relevant works in the litterature propose methods with improved precision and robustness. But those methods are not able to account for a partial knowledge of the impulse response of the sensor. In this article, we experimentally show that inverting a Choquet capacity-based model of an imprecise knowledge of this impulse response allows to robustly recover the measured signal. The method we use is an interval valued extension of the well known Schultz procedure.

Details

Language :
English
ISBN :
978-3-642-33041-4
ISBNs :
9783642330414
Database :
OpenAIRE
Journal :
Synergies of Soft Computing and Statistics for Intelligent Data Analysis, Synergies of Soft Computing and Statistics for Intelligent Data Analysis, Springer, pp.55-62, 2013, Advances in Intelligent Systems and Computing, ⟨10.1007/978-3-642-33042-1_7⟩, Synergies of Soft Computing and Statistics for Intelligent Data Analysis ISBN: 9783642330414, SMPS
Accession number :
edsair.doi.dedup.....943619d8ddfc1d1100fe0aba42339219
Full Text :
https://doi.org/10.1007/978-3-642-33042-1_7⟩