Back to Search
Start Over
The effect of castration on steady state levels of luteinizing hormone-releasing hormone (LHRH) mRNA and proLHRH processing: time course study utilizing semi-quantitative reverse transcription/polymerase chain reaction
- Source :
- Journal of Endocrinology. 148:509-515
- Publication Year :
- 1996
- Publisher :
- Bioscientifica, 1996.
-
Abstract
- Many studies have consistently shown that castration induces a prompt increase in serum levels and pituitary content of the gonadotropins, luteinizing hormone (LH) and follicle-stimulating hormone (FSH), as well as a concomitant rise in steady state levels of the messenger RNAs directing their synthesis. The reports of effects of castration on the overall physiology of hypothalamic luteinizing hormone-releasing hormone (LHRH) — steady state levels of LHRH mRNA, post-translational processing and secretion — have, however, not been consistent. The goal of the studies reported here was to provide the first analysis of the effect of castration, at multiple post-operative time points, on steady state levels of LHRH mRNA and on the levels of hypothalamic proLHRH. All these data are correlated with hypothalamic levels of the mature LHRH decapeptide and with serum and pituitary levels of immunoreactive LH and FSH. Adult male rats were either castrated or sham-castrated (controls) and then sacrificed at 1, 3, 5, 7, 14, 21 or 28 days postoperatively. As expected, there was a prompt and sustained rise in serum immunoreactive LH and FSH in castrates compared with sham-operated animals. Intrapituitary LH levels rose above levels in the sham-operated animals by 14 days post castration. Intra-pituitary FSH showed a biphasic response, first falling significantly below control levels, then rising above control levels at 21 days. Steady state levels of LHRH mRNA in castrates, measured by reverse transcription/polymerase chain reaction, were increased about 2-fold above control levels by 1 day postoperatively, but were virtually identical to control levels at each of the other time points despite marked changes in the gonadotropins. ProLHRH content in castrates was 1·8-times that seen in controls at 1 day post castration (PPP We conclude that: (1) changes in steady state levels of LHRH mRNA after castration are small and transient and (2) increased proLHRH coupled with unchanged LHRH levels at 1 day post castration, and castrate animal pro-LHRH at control levels coupled with falling LHRH at later post-castration time points indicate that the effect of gonadectomy on post-translational processing of pro-LHRH to LHRH is, likewise, small and transient. In aggregate our data suggest that most of the increase in serum LH and FSH seen in male rats after castration is not mediated at the hypothalamic level. Journal of Endocrinology (1996) 148, 509–515
- Subjects :
- Male
endocrine system
medicine.medical_specialty
Time Factors
medicine.drug_class
Endocrinology, Diabetes and Metabolism
Prohormone
Hypothalamus
Biology
Polymerase Chain Reaction
Gonadotropin-Releasing Hormone
Rats, Sprague-Dawley
chemistry.chemical_compound
Endocrinology
Internal medicine
medicine
Animals
RNA, Messenger
Orchiectomy
Protein Precursors
Analysis of Variance
Luteinizing Hormone
Rats
Reverse transcription polymerase chain reaction
Castration
chemistry
Pituitary Gland
Follicle Stimulating Hormone
Gonadotropin
Luteinizing hormone
hormones, hormone substitutes, and hormone antagonists
medicine.drug
Hormone
Subjects
Details
- ISSN :
- 14796805 and 00220795
- Volume :
- 148
- Database :
- OpenAIRE
- Journal :
- Journal of Endocrinology
- Accession number :
- edsair.doi.dedup.....943809ab883e1a6285be2c1a84f8978c
- Full Text :
- https://doi.org/10.1677/joe.0.1480509