Back to Search Start Over

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations

Authors :
Emmanuel Dupoux
Jade Copet
Wei-Ning Hsu
Kushal Lakhotia
Eugene Kharitonov
Yossi Adi
Abdelrahman Mohamed
Adam Polyak
Facebook AI Research [Paris] (FAIR)
Facebook
Laboratoire de sciences cognitives et psycholinguistique (LSCP)
Département d'Etudes Cognitives - ENS Paris (DEC)
École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS-PSL)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)
Apprentissage machine et développement cognitif (CoML)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Département d'Etudes Cognitives - ENS Paris (DEC)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École des hautes études en sciences sociales (EHESS)-Centre National de la Recherche Scientifique (CNRS)-Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
ANR-19-P3IA-0001,PRAIRIE,PaRis Artificial Intelligence Research InstitutE(2019)
ANR-17-EURE-0017,FrontCog,Frontières en cognition(2017)
ANR-10-IDEX-0001,PSL,Paris Sciences et Lettres(2010)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-École normale supérieure - Paris (ENS Paris)
Inria de Paris
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de sciences cognitives et psycholinguistique (LSCP)
Source :
HAL, INTERSPEECH 2021-Annual Conference of the International Speech Communication Association, INTERSPEECH 2021-Annual Conference of the International Speech Communication Association, Aug 2021, Brno, Czech Republic

Abstract

We propose using self-supervised discrete representations for the task of speech resynthesis. To generate disentangled representation, we separately extract low-bitrate representations for speech content, prosodic information, and speaker identity. This allows to synthesize speech in a controllable manner. We analyze various state-of-the-art, self-supervised representation learning methods and shed light on the advantages of each method while considering reconstruction quality and disentanglement properties. Specifically, we evaluate the F0 reconstruction, speaker identification performance (for both resynthesis and voice conversion), recordings' intelligibility, and overall quality using subjective human evaluation. Lastly, we demonstrate how these representations can be used for an ultra-lightweight speech codec. Using the obtained representations, we can get to a rate of 365 bits per second while providing better speech quality than the baseline methods. Audio samples can be found under the following link: speechbot.github.io/resynthesis.<br />In Proceedings of Interspeech 2021

Details

Database :
OpenAIRE
Journal :
HAL, INTERSPEECH 2021-Annual Conference of the International Speech Communication Association, INTERSPEECH 2021-Annual Conference of the International Speech Communication Association, Aug 2021, Brno, Czech Republic
Accession number :
edsair.doi.dedup.....944641e134d739dd6f410d784b6d6ff4