Back to Search Start Over

Ultrafast switch-on dynamics of frequency-tuneable semiconductor lasers

Authors :
Iman Kundu
Paul Dean
Lianhe Li
Gary Agnew
Hanond Nong
Alexander Valavanis
Xiaoqiong Qi
Juliette Mangeney
Thomas Taimre
Feihu Wang
Andrew Grier
Aleksandar D. Rakić
A. Giles Davies
Sukhdeep Dhillon
Jérôme Tignon
Joshua R. Freeman
Edmund H. Linfield
Dragan Indjin
John Cunningham
University of Leeds
Laboratoire Pierre Aigrain (LPA)
Fédération de recherche du Département de physique de l'Ecole Normale Supérieure - ENS Paris (FRDPENS)
École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris)
Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Queensland University of Technology [Brisbane] (QUT)
Source :
Nature Communications, Vol 9, Iss 1, Pp 1-8 (2018), Nature Communications, Nature Communications, Nature Publishing Group, 2018, 9 (1), pp.3076. ⟨10.1038/s41467-018-05601-x⟩

Abstract

Single-mode frequency-tuneable semiconductor lasers based on monolithic integration of multiple cavity sections are important components, widely used in optical communications, photonic integrated circuits and other optical technologies. To date, investigations of the ultrafast switching processes in such lasers, essential to reduce frequency cross-talk, have been restricted to the observation of intensity switching over nanosecond-timescales. Here, we report coherent measurements of the ultrafast switch-on dynamics, mode competition and frequency selection in a monolithic frequency-tuneable laser using coherent time-domain sampling of the laser emission. This approach allows us to observe hopping between lasing modes on picosecond-timescales and the temporal evolution of transient multi-mode emission into steady-state single mode emission. The underlying physics is explained through a full multi-mode, temperature-dependent carrier and photon transport model. Our results show that the fundamental limit on the timescales of frequency-switching between competing modes varies with the underlying Vernier alignment of the laser cavity.

Details

Language :
English
ISSN :
20411723
Volume :
9
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....9458a2d3273c63227ee32351315cc82d
Full Text :
https://doi.org/10.1038/s41467-018-05601-x