Back to Search Start Over

The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector

Authors :
D. Cianci
A. P. Furmanski
B. Russell
R. Acciarri
W. G. Seligman
B. Eberly
J. Anthony
J. L. Raaf
H. S. Chen
D. Goeldi
C. Adams
D. Kaleko
J. Zennamo
A. Hourlier
M. Auger
D. Garcia-Gamez
S. F. Pate
C. James
T. Kobilarcik
B. R. Littlejohn
V. Papavassiliou
G. H. Collin
M. Mooney
J. Joshi
D. A. Martinez Caicedo
J. Asaadi
C. Zhang
D. Lorca
W. Ketchum
R. Guenette
F. Bay
T. Miceli
T. Usher
R. G. Van de Water
Michael H Kirby
R. Grosso
G. A. Horton-Smith
B. Baller
L. Bagby
C. Barnes
A. Rafique
B. Lundberg
E. Gramellini
M. Bishai
E. Cohen
J. A. Nowak
F. Cavanna
G. T. Garvey
Z. Pavlovic
Y.-T. Tsai
E.-C. Huang
P. M. Hamilton
G. Karagiorgi
M. Luethi
P. Nienaber
Janet Conrad
J. Esquivel
Panagiotis Spentzouris
G. P. Zeller
T. Wongjirad
J. St. John
Xin Qian
R. Castillo Fernandez
K. Woodruff
X. Luo
John Marshall
A. M. Szelc
Ornella Palamara
R. A. Johnson
J. Moon
Colin Hill
A. Marchionni
D. Naples
J. Ho
G. B. Mills
A. Schukraft
E.L. Snider
W. C. Louis
H. Jöstlein
S. Gollapinni
D. Porzio
C. Mariani
H. Greenlee
C.-M. Jen
Luke A. Yates
Thomas Strauss
M. A. Thomson
J. Sinclair
J. I. Crespo-Anadón
R. An
J. Hewes
T. Yang
S. Tufanli
W. Foreman
V. Paolone
Kazuhiro Terao
B. Kirby
E. Piasetzky
B.T. Fleming
S. Dytman
T. Bolton
S. Söldner-Rembold
N. Graf
D. W. Schmitz
J. Jan de Vries
D. Devitt
M. Soderberg
B. Carls
V. Genty
Andrew Blake
L. Jiang
A. Laube
G. Pulliam
M. H. Shaevitz
L. Camilleri
M. Toups
J. Spitz
Or Hen
Marc Weber
M. E. Convery
Andrew Smith
I. Kreslo
S.R. Soleti
B. Viren
J. Mousseau
M. Del Tutto
C. Rudolf von Rohr
Antonio Ereditato
L. Escudero Sanchez
M. Bass
E. Church
N. Tagg
G.D. Barr
D. Caratelli
A. Hackenburg
Yang Li
W. Van De Pontseele
C.D. Moore
S. Lockwitz
S. Balasubramanian
A. Lister
S. Wolbers
V. Meddage
D.A. Wickremasinghe
L. Rochester
A.A. Fadeeva
R. Murrells
Collin, G. H.
Conrad, Janet Marie
Hen, Or
Hourlier, Adrien C.
Moon, J.
Wongjirad, Taritree
Yates, Lauren Elizabeth
Source :
Springer Berlin Heidelberg, Acciarri, R, Adams, C, An, R, Anthony, J, Asaadi, J, Auger, M, Bagby, L, Balasubramanian, S, Baller, B, Barnes, C, Barr, G, Bass, M, Bay, F, Bishai, M, Blake, A, Bolton, T, Camilleri, L, Caratelli, D, Carls, B, Castillo Fernandez, R, Cavanna, F, Chen, H, Church, E, Cianci, D, Cohen, E, Collin, G H, Conrad, J M, Convery, M, Crespo-Anadón, J I, Del Tutto, M, Devitt, D, Dytman, S, Eberly, B, Ereditato, A, Escudero Sanchez, L, Esquivel, J, Fadeeva, A A, Fleming, B T, Foreman, W, Furmanski, A P, Garcia-Gamez, D, Garvey, G T, Genty, V, Goeldi, D, Gollapinni, S, Graf, N, Gramellini, E, Greenlee, H, Grosso, R, Guenette, R, Hackenburg, A, Hamilton, P, Hen, O, Hewes, J, Hill, C, Ho, J, Horton-Smith, G, Hourlier, A, Huang, E C, James, C, Jan de Vries, J, Jen, C M, Jiang, L, Johnson, R A, Joshi, J, Jostlein, H, Kaleko, D, Karagiorgi, G, Ketchum, W, Kirby, B, Kirby, M, Kobilarcik, T, Kreslo, I, Laube, A, Li, Y, Lister, A, Littlejohn, B R, Lockwitz, S, Lorca, D, Louis, W C, Luethi, M, Lundberg, B, Luo, X, Marchionni, A, Mariani, C, Marshall, J, Martinez Caicedo, D A, Meddage, V, Miceli, T, Mills, G B, Moon, J, Mooney, M, Moore, C D, Mousseau, J, Murrells, R, Naples, D, Nienaber, P, Nowak, J, Palamara, O, Paolone, V, Papavassiliou, V, Pate, S F, Pavlovic, Z, Piasetzky, E, Porzio, D, Pulliam, G, Qian, X, Raaf, J L, Rafique, A, Rochester, L, Rudolf von Rohr, C, Russell, B, Schmitz, D W, Schukraft, A, Seligman, W, Shaevitz, M H, Sinclair, J, Smith, A, Snider, E L, Soderberg, M, Söldner-Rembold, S, Soleti, S R, Spentzouris, P, Spitz, J, St. John, J, Strauss, T, Szelc, A M, Tagg, N, Terao, K, Thomson, M, Toups, M, Tsai, Y T, Tufanli, S, Usher, T, Vandepontseele, W, Vandewater, R G, Viren, B, Weber, M, Wickremasinghe, D A, Wolbers, S, Wongjirad, T, Woodruff, K, Yang, T, Yates, L, Zeller, G P, Zennamo, J & Zhang, C 2018, ' The Pandora multi-algorithm approach to automated pattern recognition of cosmic-ray muon and neutrino events in the MicroBooNE detector ', European Physical Journal C, vol. 78, no. 1, 82 . https://doi.org/10.1140/epjc/s10052-017-5481-6, The European Physical Journal. C, Particles and Fields, European Physical Journal, BASE-Bielefeld Academic Search Engine, European Physical Journal C: Particles and Fields, Vol 78, Iss 1, Pp 1-25 (2018), Eur. Phys. J. C, 1 (2018) pp. 82, The European Physical Journal C
Publication Year :
2018

Abstract

The development and operation of liquid-argon time-projection chambers for neutrino physics has created a need for new approaches to pattern recognition in order to fully exploit the imaging capabilities offered by this technology. Whereas the human brain can excel at identifying features in the recorded events, it is a significant challenge to develop an automated, algorithmic solution. The Pandora Software Development Kit provides functionality to aid the design and implementation of pattern-recognition algorithms. It promotes the use of a multi-algorithm approach to pattern recognition, in which individual algorithms each address a specific task in a particular topology. Many tens of algorithms then carefully build up a picture of the event and, together, provide a robust automated pattern-recognition solution. This paper describes details of the chain of over one hundred Pandora algorithms and tools used to reconstruct cosmic-ray muon and neutrino events in the MicroBooNE detector. Metrics that assess the current pattern-recognition performance are presented for simulated MicroBooNE events, using a selection of final-state event topologies.

Details

ISSN :
14346052 and 14346044
Volume :
78
Issue :
1
Database :
OpenAIRE
Journal :
European Physical Journal C
Accession number :
edsair.doi.dedup.....9493626550049f1ca37a6db5ef0e77a7