Back to Search Start Over

A long noncoding RNA functions in high-light-induced anthocyanin accumulation in apple by activating ethylene synthesis

Authors :
Jiaxuan Yu
Kainan Qiu
Wenjing Sun
Tuo Yang
Ting Wu
Tingting Song
Jie Zhang
Yuncong Yao
Ji Tian
Source :
Plant Physiology. 189:66-83
Publication Year :
2022
Publisher :
Oxford University Press (OUP), 2022.

Abstract

Anthocyanin production in apple (Malus domestica) fruit and their consequent coloration can be induced by high-light treatment. The hormone ethylene is also essential for this coloration, but the regulatory relationships that link ethylene and light with anthocyanin-associated coloration are not well defined. In this study, we observed that high-light treatment of apple fruit increased anthocyanin accumulation more than moderate-light treatment did and was the main contributor of induced ethylene production and activation of anthocyanin biosynthesis. A transcriptome study of light-treated apple fruit suggested that a long noncoding RNA (lncRNA), MdLNC610, the corresponding gene of which is physically located downstream from the 1-aminocyclopropane-1-carboxylate oxygenase (ACO) ethylene biosynthesis gene MdACO1, likely affects anthocyanin biosynthesis under high-light treatment. Expression and promoter β-glucuronidase reporter analyses further showed that MdLNC610 upregulates expression of MdACO1 and so likely participates in high-light-induced ethylene biosynthesis. Overexpression of MdACO1 and MdLNC610 in apple fruit and calli indicated that a major increase in MdLNC610 expression activates MdACO1 expression, thereby causing an increase in ethylene production and anthocyanin levels. These results suggest that MdLNC610 participates in the regulation of high-light-induced anthocyanin production by functioning as a positive regulator to promote MdACO1 expression and ethylene biosynthesis. Our study provides insights into the relationship between mRNA and lncRNA networks in the ethylene biosynthetic pathway and anthocyanin accumulation in apple fruit.

Details

ISSN :
15322548 and 00320889
Volume :
189
Database :
OpenAIRE
Journal :
Plant Physiology
Accession number :
edsair.doi.dedup.....94961cd834a119322e39f596c012aee9
Full Text :
https://doi.org/10.1093/plphys/kiac049