Back to Search Start Over

Hypoxia of the growing liver accelerates regeneration

Authors :
Beatrice Beck-Schimmer
Roland H. Wenger
Ann Mae Diehl
Erik Schadde
Martin Urner
Christopher Tsatsaris
Christa Booy
Donat R. Spahn
Martin Hertl
Stuart J. Knechtle
R. C. Schimmer
Martin Schläpfer
Stefan Breitenstein
Birgit Roth Z'graggen
Marzena Swiderska-Syn
Source :
Surgery. 161:666-679
Publication Year :
2017
Publisher :
Elsevier BV, 2017.

Abstract

Background After portal vein ligation of 1 side of the liver, the other side regenerates at a slow rate. This slow growth may be accelerated to rapid growth by adding a transection between the 2 sides, i.e., performing portal vein ligation and parenchymal transection. We found that in patients undergoing portal vein ligation and parenchymal transection, portal vein hyperflow in the regenerating liver causes a significant reduction of arterial flow due to the hepatic arterial buffer response. We postulated that the reduction of arterial flow induces hypoxia in the regenerating liver and used a rat model to assess hypoxia and its impact on kinetic growth. Methods A rat model of rapid (portal vein ligation and parenchymal transection) and slow regeneration (portal vein ligation) was established. Portal vein flow and pressure data were collected. Liver regeneration was assessed in rats using computed tomography, proliferation with Ki-67, and hypoxia with pimonidazole and HIF-1α staining. Results The rat model confirmed acceleration of regeneration in portal vein ligation and parenchymal transection as well as the portal vein hyperflow seen in patients. Additionally, tissue hypoxia was observed after portal vein ligation and parenchymal transection, while little hypoxia staining was detected after portal vein ligation. To determine if hypoxia is a consequence or an inciting stimulus of rapid liver regeneration, we used a prolyl-hydroxylase blocker to activate hypoxia signaling pathways in the slow model. This clearly accelerated slow to rapid liver regeneration. Inversely, abrogation of hypoxia led to a blunting of rapid growth to slow growth. The topical application of prolyl-hydroxylase inhibitors on livers in rats induced spontaneous areas of regeneration. Conclusion This study shows that pharmacologically induced hypoxic signaling accelerates liver regeneration similar to portal vein ligation and parenchymal transection. Hypoxia is likely an accelerator of liver regeneration. Also, prolyl-hydroxylase inhibitors may be used to enhance liver regeneration pharmaceutically.

Details

ISSN :
00396060
Volume :
161
Database :
OpenAIRE
Journal :
Surgery
Accession number :
edsair.doi.dedup.....94a0f4fe4aeb2b03f3b2e9689068e43b
Full Text :
https://doi.org/10.1016/j.surg.2016.05.018