Back to Search Start Over

Abiotic Input of Fixed Nitrogen by Bolide Impacts to Gale Crater During the Hesperian: Insights From the Mars Science Laboratory

Authors :
Patrice Coll
Jennifer C. Stern
Daniel P. Glavin
Christopher P. McKay
Heather B. Franz
Paul R. Mahaffy
Jennifer L. Eigenbrode
P. Douglas Archer
Rafael Navarro-González
Arnaud Buch
Benny Prats
Michel Cabane
María Paz Zorzano-Mier
Charles Malespin
Caroline Freissinet
Ashwin Vasavada
Douglas W. Ming
J. V. Hogancamp
Richard V. Morris
José Antonio Rodríguez-Manfredi
Karina F. Navarro
Amy McAdam
Brad Sutter
F. Javier Martin-Torres
Sushil K. Atreya
François Raulin
Melissa G. Trainer
Pamela G. Conrad
Cyril Szopa
Universidad Nacional Autónoma de México
Consejo Nacional de Ciencia y Tecnología (México)
Instituto de Ciencias Nucleares [Mexico]
Universidad Nacional Autónoma de México = National Autonomous University of Mexico (UNAM)
Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA (UMR_7583))
Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Centre National de la Recherche Scientifique (CNRS)
NASA Ames Research Center (ARC)
NASA Goddard Space Flight Center (GSFC)
Jacobs Technology ESCG
NASA Johnson Space Center (JSC)
NASA
Laboratoire de Génie des Procédés et Matériaux - EA 4038 (LGPM)
CentraleSupélec
PLANETO - LATMOS
Laboratoire Atmosphères, Milieux, Observations Spatiales (LATMOS)
Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)
Department of Computer Science, Electrical and Space Engineering [Luleå]
Luleå University of Technology (LUT)
Centro de Astrobiologia [Madrid] (CAB)
Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Madrid] (CSIC)
Department of Atmospheric, Oceanic, and Space Sciences [Ann Arbor] (AOSS)
University of Michigan [Ann Arbor]
University of Michigan System-University of Michigan System
Jet Propulsion Laboratory (JPL)
NASA-California Institute of Technology (CALTECH)
Universidad Nacional Autónoma de México (UNAM)
Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12)-Institut national des sciences de l'Univers (INSU - CNRS)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS)
IMPEC - LATMOS
Instituto Nacional de Técnica Aeroespacial (INTA)-Consejo Superior de Investigaciones Científicas [Spain] (CSIC)
Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Sorbonne Université (SU)-Université de Versailles Saint-Quentin-en-Yvelines (UVSQ)-Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)
California Institute of Technology (CALTECH)-NASA
Source :
Journal of Geophysical Research. Planets, Journal of Geophysical Research. Planets, Wiley-Blackwell, 2019, 124 (1), pp.94-113. ⟨10.1029/2018je005852⟩, Digital.CSIC. Repositorio Institucional del CSIC, instname, Digibug. Repositorio Institucional de la Universidad de Granada, Journal of Geophysical Research. Planets, 2019, 124 (1), pp.94-113. ⟨10.1029/2018je005852⟩
Publication Year :
2019
Publisher :
American Geophysical Union, 2019.

Abstract

Molecular hydrogen (H2) from volcanic emissions is suggested to warm the Martian surface when carbon dioxide (CO2) levels dropped from the Noachian (4100 to 3700 Myr) to the Hesperian (3700 to 3000 Myr). Its presence is expected to shift the conversion of molecular nitrogen (N2) into different forms of fixed nitrogen (N). Here we present experimental data and theoretical calculations that investigate the efficiency of nitrogen fixation by bolide impacts in CO2‐N2 atmospheres with or without H2. Surprisingly, nitric oxide (NO) was produced more efficiently in 20% H2 in spite of being a reducing agent and not likely to increase the rate of nitrogen oxidation. Nevertheless, its presence led to a faster cooling of the shock wave raising the freeze‐out temperature of NO resulting in an enhanced yield. We estimate that the nitrogen fixation rate by bolide impacts varied from 7 × 10−4 to 2 × 10−3 g N·Myr−1·cm−2 and could imply fluvial concentration to explain the nitrogen (1.4 ± 0.7 g N·Myr−1·cm−2) detected as nitrite (NO2 −) and nitrate (NO3 −) by Curiosity at Yellowknife Bay. One possible explanation is that the nitrogen detected in the lacustrine sediments at Gale was deposited entirely on the crater's surface and was subsequently dissolved and transported by superficial and ground waters to the lake during favorable wet climatic conditions. The nitrogen content sharply decreases in younger sediments of the Murray formation suggesting a decline of H2 in the atmosphere and the rise of oxidizing conditions causing a shortage in the supply to putative microbial life.<br />We acknowledge the NASA Mars Science Laboratory Program, Centre National d'Études Spatiales, the Universidad Nacional Autónoma de México (PAPIIT IN109416, IN111619, and PAPIME PE103216), and the Consejo Nacional de Ciencia y Tecnología de México (CONACyT 220626) for their support.

Details

ISSN :
21699100 and 21699097
Database :
OpenAIRE
Journal :
Journal of Geophysical Research - Part E - Planets 124: 94-13 (2019)
Accession number :
edsair.doi.dedup.....94d3324be915a6638be53264bde31f45
Full Text :
https://doi.org/10.1029/2018je005852⟩