Back to Search Start Over

Hydrodynamics and gas-liquid mass transfer around a confined sliding bubble

Authors :
Abderrahmane Kherbeche
Mei Mei
Nicolas Dietrich
Marie-Jean Thoraval
Gilles Hébrard
State Key Laboratory for strength and vibration of mechanical structures
Xi'an Jiaotong University (Xjtu)
Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés (LISBP)
Institut National de la Recherche Agronomique (INRA)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)
Centre National de la Recherche Scientifique (CNRS)-Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Institut National de la Recherche Agronomique (INRA)
Centre National de la Recherche Scientifique - CNRS (FRANCE)
Institut National Polytechnique de Toulouse - Toulouse INP (FRANCE)
Institut National de la Recherche Agronomique - INRA (FRANCE)
Institut National des Sciences Appliquées de Toulouse - INSA (FRANCE)
Université Toulouse III - Paul Sabatier - UT3 (FRANCE)
Xi'an Jiaotong University - XJTU (CHINA)
Laboratoire d'Ingénierie des Systèmes Biologiques et des Procédés - LISBP (Toulouse, France)
Source :
Chemical Engineering Journal, Chemical Engineering Journal, 2020, 386, ⟨10.1016/j.cej.2019.04.041⟩, Chemical Engineering Journal, Elsevier, 2019, ⟨10.1016/j.cej.2019.04.041⟩, Chemical Engineering Journal, Elsevier, 2019, 386, ⟨10.1016/j.cej.2019.04.041⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; An experimental investigation of gas-liquid mass transfer in the wake of a confined air bubble sliding under an inclined wall in a 2D Hele-Shaw cell is reported. A colorimetric technique based on an oxygen-sensitive dye was used to visualize the oxygen transfer. Bubble velocities, shape eccentricities, interfacial areas and, for the first time, the instantaneous spatio-temporal distribution of oxygen concentration fields in the bubble wake, have been investigated for upper wall inclination angles of 10° ≤ α ≤ 60° and Archimedes numbers of 783 ≤ Ar ≤ 3221. Image processing has allowed, through a specific approach, a quantification of mass transfer. The calculation of the mass flux allowed the deduction of the liquid-side mass transfer coefficient kL. Experiments reveals that, at low angles of inclination, bubble velocities decelerates, shape eccentricities increased, and the instantaneous spatial and temporal distribution of oxygen concentration fields illustrated two distinct regions underneath the sliding bubble: a single vortex loop enclosing the near wake where oxygen is transferred, and a far wake containing oxygen in the form of a single long strip. When inclination angles and bubble sizes were increasing, velocities were increasing, the vortex elongated gradually until it disappears at high angles where total mass fluxes increased. This increase of bubble velocities has increased liquid-side mass transfer coefficient kL allowing a scaling law between the Sherwood number and the modified Archimedes number Ar.sin(α) to be proposed.

Details

Language :
English
ISSN :
13858947
Database :
OpenAIRE
Journal :
Chemical Engineering Journal, Chemical Engineering Journal, 2020, 386, ⟨10.1016/j.cej.2019.04.041⟩, Chemical Engineering Journal, Elsevier, 2019, ⟨10.1016/j.cej.2019.04.041⟩, Chemical Engineering Journal, Elsevier, 2019, 386, ⟨10.1016/j.cej.2019.04.041⟩
Accession number :
edsair.doi.dedup.....94fb52ec20c743faf4be0ce2fbea52f6
Full Text :
https://doi.org/10.1016/j.cej.2019.04.041⟩