Back to Search
Start Over
Towards a more flexible language of thought: Bayesian grammar updates after each concept exposure
- Source :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Publication Year :
- 2020
- Publisher :
- American Physical Society, 2020.
-
Abstract
- Recent approaches to human concept learning have successfully combined the power of symbolic, infinitely productive rule systems and statistical learning to explain our ability to learn new concepts from just a few examples. The aim of most of these studies is to reveal the underlying language structuring these representations and providing a general substrate for thought. However, describing a model of thought that is fixed once trained is against the extensive literature that shows how experience shapes concept learning. Here, we ask about the plasticity of these symbolic descriptive languages. We perform a concept learning experiment that demonstrates that humans can change very rapidly the repertoire of symbols they use to identify concepts, by compiling expressions that are frequently used into new symbols of the language. The pattern of concept learning times is accurately described by a Bayesian agent that rationally updates the probability of compiling a new expression according to how useful it has been to compress concepts so far. By portraying the language of thought as a flexible system of rules, we also highlight the difficulties to pin it down empirically. Fil: Tano, Pablo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales; Argentina Fil: Romano, Sergio Gaston. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina Fil: Sigman, Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Torcuato Di Tella; Argentina. Universidad Nebrija; España Fil: Salles, Alejo. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Calculo. - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Calculo; Argentina Fil: Figueira, Santiago. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigación en Ciencias de la Computación. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigación en Ciencias de la Computación; Argentina. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Departamento de Computación; Argentina
- Subjects :
- FOS: Computer and information sciences
Cognitive science
Grammar
Bayesian methods
Statistical learning
Computer science
Computer Science - Artificial Intelligence
Repertoire
media_common.quotation_subject
Bayesian probability
purl.org/becyt/ford/1.2 [https]
01 natural sciences
Structuring
Expression (mathematics)
010305 fluids & plasmas
purl.org/becyt/ford/1 [https]
Language of thought
Artificial Intelligence (cs.AI)
Ask price
Concept learning
0103 physical sciences
Learning
010306 general physics
media_common
Neuroscience
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- CONICET Digital (CONICET), Consejo Nacional de Investigaciones Científicas y Técnicas, instacron:CONICET
- Accession number :
- edsair.doi.dedup.....9510e405d6f2609efc4dc017ccfbbdef
- Full Text :
- https://doi.org/10.1103/PhysRevE.101.042128