Back to Search Start Over

Quenched nematic criticality separating two superconducting domes in an iron-based superconductor under pressure

Authors :
Reiss, Pascal
Graf, David
Haghighirad, Amir
Knafo, William
Drigo, Loïc
Bristow, Matthew
Schofield, Andrew
Coldea, Amalia
Laboratoire national des champs magnétiques intenses - Toulouse (LNCMI-T)
Institut National des Sciences Appliquées - Toulouse (INSA Toulouse)
Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Institut National des Sciences Appliquées (INSA)-Université de Toulouse (UT)-Université Toulouse III - Paul Sabatier (UT3)
Université de Toulouse (UT)-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Institut National des Sciences Appliquées (INSA)-Institut National des Sciences Appliquées (INSA)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)
Source :
Nature Physics, Nature Physics, 2020, 16 (1), pp.89-94. ⟨10.1038/s41567-019-0694-2⟩, Nature Physics, Nature Publishing Group, 2020, 16 (1), pp.89-94. ⟨10.1038/s41567-019-0694-2⟩
Publication Year :
2019

Abstract

The nematic electronic state and its associated nematic critical fluctuations have emerged as potential candidates for superconducting pairing in various unconventional superconductors. However, in most materials their coexistence with other magnetically-ordered phases poses significant challenges in establishing their importance. Here, by combining chemical and hydrostatic physical pressure in FeSe$_{0.89}$S$_{0.11}$, we provide a unique access to a clean nematic quantum phase transition in the absence of a long-range magnetic order. We find that in the proximity of the nematic phase transition, there is an unusual non-Fermi liquid behavior in resistivity at high temperatures that evolves into a Fermi liquid behaviour at the lowest temperatures. From quantum oscillations in high magnetic fields, we trace the evolution of the Fermi surface and electronic correlations as a function of applied pressure. We detect experimentally a Lifshitz transition that separates two distinct superconducting regions: one emerging from the nematic electronic phase with a small Fermi surface and strong electronic correlations and the other one with a large Fermi surface and weak correlations that promotes nesting and stabilization of a magnetically-ordered phase at high pressures. The lack of mass divergence suggests that the nematic critical fluctuations are quenched by the strong coupling to the lattice. This establishes that superconductivity is not enhanced at the nematic quantum phase transition in the absence of magnetic order.<br />4 figures, 9 pages

Details

Language :
English
ISSN :
17452473 and 14764636
Database :
OpenAIRE
Journal :
Nature Physics, Nature Physics, 2020, 16 (1), pp.89-94. ⟨10.1038/s41567-019-0694-2⟩, Nature Physics, Nature Publishing Group, 2020, 16 (1), pp.89-94. ⟨10.1038/s41567-019-0694-2⟩
Accession number :
edsair.doi.dedup.....953dd3117597a39f2b2fc0d087bc0d69
Full Text :
https://doi.org/10.1038/s41567-019-0694-2⟩