Back to Search
Start Over
Dense edge-magic graphs and thin additive bases
- Source :
- Discrete Mathematics. (17):2097-2107
- Publisher :
- Elsevier B.V.
-
Abstract
- We study s(k,n), the maximum size of A+A where A is a k-subset of [n]. A few known functions from additive number theory can be expressed via s(k,n). For example, our estimates of s(k,n) imply new bounds on the maximum size of quasi-Sidon sets, a problem posed by Erdos and Freud [J. Number Th.38 (1991) 196-205]. Also, applications to so-called edge-magic labellings of graphs are given.<br />19 pages; 4 figures
- Subjects :
- 0102 computer and information sciences
01 natural sciences
Upper and lower bounds
Theoretical Computer Science
Combinatorics
Sidon set
Edge-magic graph
FOS: Mathematics
Discrete Mathematics and Combinatorics
05C78
11B75
Mathematics - Combinatorics
Maximum size
Number Theory (math.NT)
0101 mathematics
Mathematics
Discrete mathematics
Mathematics - Number Theory
Sum-set
010102 general mathematics
Quasi-Sidon set
Graph
Number theory
010201 computation theory & mathematics
Additive number theory
Bijection
Combinatorics (math.CO)
Additive basis
Subjects
Details
- Language :
- English
- ISSN :
- 0012365X
- Issue :
- 17
- Database :
- OpenAIRE
- Journal :
- Discrete Mathematics
- Accession number :
- edsair.doi.dedup.....95829ecd27855241cb1b6c4f67bb67bc
- Full Text :
- https://doi.org/10.1016/j.disc.2006.05.003