Back to Search
Start Over
Continued proportions and Tartaglia's solution of cubic equations
- Source :
- Historia Mathematica, Historia Mathematica, Elsevier, 2015, 42 (4), pp.407-435. ⟨10.1016/j.hm.2015.03.004⟩
- Publication Year :
- 2015
- Publisher :
- Elsevier BV, 2015.
-
Abstract
- International audience; We analyze Tartaglia's account, in 1546, of the circumstances leading to his breakthrough regarding the solution of cubic equations. He claims that he solved $x^3+rx^2=q$ in 1530, well before he could handle, in 1535, equations with a linear term $px$ (and no quadratic term). This claim is at variance with Cardano's narrative as well as with later treatments of the problem, in which the solution of equations of the latter type provides the basis for the solution of all the other types of cubic equations. We show that Tartaglia's claim is supported in his text by the use of the theory of continued proportions, that occurs as a Leitmotiv. We show that relations on continued proportions stressed by Pacioli as basic ``keys'' provide a simple derivation of the results given by Tartaglia, that is consistent with their chronological order. Thus, his narrative contains not only priority claims, but also proposes an account of the mathematical steps that led him to his results.; On analyse le récit que fait Tartaglia, en 1546, des circonstances qui l'ont conduit \`a sa découverte du mode de résolution de certaines \'equations du troisi\`eme degr\'e. Il y affirme avoir résolu l'équation $x^3+rx^2=q$ dès 1530, bien avant qu'il fût en mesure d'aborder les équations avec un terme $px$ (et sans terme carré). Ceci est incompatible avec le mode de résolution de Cardan, ainsi qu'avec ceux préconisés par les auteurs postérieurs, pour qui la solution de ces dernières équations fournit la base de celle de toutes les autres équations de degré trois. On montre que la théorie des proportions continuées tient une place centrale dans le texte de Tartaglia et que, si l'on part des ``clefs'' que Pacioli désigne comme des outils fondamentaux, on obtient une dérivation très simple des résultats de Tartaglia, dans l'ordre de leur découverte. Son récit vise donc non seulement à établir sa priorité, mais également à suggérer la démarche qui l'a conduit à ses résultats.
- Subjects :
- History
[MATH.MATH-AC]Mathematics [math]/Commutative Algebra [math.AC]
General Mathematics
Cardano
Geometry
Italian Renaissance
Type (model theory)
01 natural sciences
Proportions continuées
[SHS.HISPHILSO]Humanities and Social Sciences/History, Philosophy and Sociology of Sciences
Theory of equations
Polynômes
[MATH.MATH-GM]Mathematics [math]/General Mathematics [math.GM]
Quadratic equation
Simple (abstract algebra)
Polynomial equations
Order (group theory)
Applied mathematics
0601 history and archaeology
0101 mathematics
Continued proportions
[MATH.MATH-MG]Mathematics [math]/Metric Geometry [math.MG]
Cardan
Mathematics
Basis (linear algebra)
010102 general mathematics
06 humanities and the arts
equations du troisième degré
Term (logic)
Algebra
060105 history of science, technology & medicine
[MATH.MATH-HO]Mathematics [math]/History and Overview [math.HO]
cubic
AMS classification: 01A40, 12E12, 12-03
Cubic function
Subjects
Details
- ISSN :
- 03150860 and 1090249X
- Volume :
- 42
- Database :
- OpenAIRE
- Journal :
- Historia Mathematica
- Accession number :
- edsair.doi.dedup.....95a8b46abedd3fefa18140b485d65247
- Full Text :
- https://doi.org/10.1016/j.hm.2015.03.004