Back to Search Start Over

Building a model of the brain: from detailed connectivity maps to network organization

Authors :
Mauricio Girardi-Schappo
Nilton L. Kamiji
Antonio C. Roque
Rodrigo F. O. Pena
Vinicius Lima
Renan O. Shimoura
Universidade de São Paulo = University of São Paulo (USP)
New Jersey Institute of Technology [Newark] (NJIT)
Institut de Neurosciences des Systèmes (INS)
Aix Marseille Université (AMU)-Institut National de la Santé et de la Recherche Médicale (INSERM)
University of Ottawa [Ottawa]
Otten, Lisa
Source :
The European Physical Journal. Special Topics, The European Physical Journal. Special Topics, EDP Sciences, 2021, 230 (14-15), pp.2887-2909. ⟨10.1140/epjs/s11734-021-00152-7⟩, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Publication Year :
2021
Publisher :
arXiv, 2021.

Abstract

The field of computational modeling of the brain is advancing so rapidly that now it is possible to model large scale networks representing different brain regions with a high level of biological detail in terms of numbers and synapses. For a theoretician approaching a neurobiological question, it is important to analyze the pros and cons of each of the models available. Here, we provide a tutorial review on recent models for different brain circuits, which are based on experimentally obtained connectivity maps. We discuss particularities that may be relevant to the modeler when choosing one of the reviewed models. The objective of this review is to give the reader a fair notion of the computational models covered, with emphasis on the corresponding connectivity maps, and how to use them.<br />Comment: 35 pages, 5 figures

Details

ISSN :
19516355 and 19516401
Database :
OpenAIRE
Journal :
The European Physical Journal. Special Topics, The European Physical Journal. Special Topics, EDP Sciences, 2021, 230 (14-15), pp.2887-2909. ⟨10.1140/epjs/s11734-021-00152-7⟩, Repositório Institucional da USP (Biblioteca Digital da Produção Intelectual), Universidade de São Paulo (USP), instacron:USP
Accession number :
edsair.doi.dedup.....96355d64454c45f2284dbeae3c073df9
Full Text :
https://doi.org/10.48550/arxiv.2106.03995