Back to Search Start Over

The SCF–FBXW7 E3 ubiquitin ligase triggers degradation of histone 3 lysine 4 methyltransferase complex component WDR5 to prevent mitotic slippage

Authors :
Simon Hänle-Kreidler
Kai T. Richter
Ingrid Hoffmann
Source :
Journal of Biological Chemistry. 298:102703
Publication Year :
2022
Publisher :
Elsevier BV, 2022.

Abstract

During prolonged mitotic arrest induced by anti-microtubule drugs, cell fate decision is determined by two alternative pathways, one leading to cell death, the other inducing premature escape from mitosis by mitotic slippage. FBWX7, a member of the F-box family of proteins and substrate-targeting subunit of the SCF (SKP1-CUL1-F-Box) E3 ubiquitin ligase complex promotes mitotic cell death and prevents mitotic slippage, but molecular details underlying these roles for FBWX7 are unclear. In this study, we report that WDR5, a component of the mixed lineage leukemia (MLL) complex of Histone 3 Lysine 4 (H3K4) methyltransferases, is a substrate of FBXW7. We determined by co-immunoprecipitation experiments and in vitro binding assays that WDR5 interacts with FBXW7 in vivo and in vitro. SCF-FBXW7 mediates ubiquitination of WDR5 and targets it for proteasomal degradation. Furthermore, we find that WDR5 depletion counteracts FBXW7 loss-of-function by reducing mitotic slippage and polyploidization. In conclusion, our data elucidate a new mechanism in mitotic cell fate regulation which might contribute to prevent chemotherapy resistance in patients after anti-microtubule drug treatment.

Details

ISSN :
00219258
Volume :
298
Database :
OpenAIRE
Journal :
Journal of Biological Chemistry
Accession number :
edsair.doi.dedup.....9664bdb430dd6a9e3dae2351d21e622d
Full Text :
https://doi.org/10.1016/j.jbc.2022.102703