Back to Search Start Over

Feature-based benchmarking of distance-based multi/many-objective optimisation problems: A machine learning perspective

Authors :
Arnaud Liefooghe
Sébastien Verel
Tinkle Chugh
Jonathan Fieldsend
Richard Allmendinger
Kaisa Miettinen
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Optimisation de grande taille et calcul large échelle (BONUS)
Inria Lille - Nord Europe
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 (CRIStAL)
Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)
Laboratoire d'Informatique Signal et Image de la Côte d'Opale (LISIC)
Université du Littoral Côte d'Opale (ULCO)
University of Exeter
University of Manchester [Manchester]
University of Jyväskylä (JYU)
Emmerich, Michael
Deutz, André
Wang, Hao
Kononova, Anna V.
Naujoks, Boris
Li, Ke
Miettinen, Kaisa
Yevseyeva, Iryna
Centre de Recherche en Informatique, Signal et Automatique de Lille - UMR 9189 [CRIStAL]
Optimisation de grande taille et calcul large échelle [BONUS]
Laboratoire d'Informatique Signal et Image de la Côte d'Opale [LISIC]
University of Jyväskylä [JYU]
Source :
Evolutionary Multi-Criterion Optimization : 12th International conference, EMO 2023 Leiden, The Netherlands, March 20-24, 2023. Proccedings, EMO 2023-12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2023-12th International Conference on Evolutionary Multi-Criterion Optimization, Mar 2023, Leiden, Netherlands. pp.260-273, ⟨10.1007/978-3-031-27250-9_19⟩, Lecture Notes in Computer Science ISBN: 9783031272493
Publication Year :
2023
Publisher :
HAL CCSD, 2023.

Abstract

International audience; We consider the application of machine learning techniques to gain insights into the effect of problem features on algorithm performance, and to automate the task of algorithm selection for distance-based multi- and many-objective optimisation problems. This is the most extensive benchmark study of such problems to date. The problem features can be set directly by the problem generator, and include e.g. the number of variables, objectives, local fronts, and disconnected Pareto sets. Using 945 problem configurations (leading to 28 350 instances) of varying complexity, we find that the problem features and the available optimisation budget (i) affect the considered algorithms (NSGA-II, IBEA, MOEA/D, and random search) in different ways and that (ii) it is possible to recommend a relevant algorithm based on problem features.

Details

Language :
English
ISBN :
978-3-031-27249-3
ISBNs :
9783031272493
Database :
OpenAIRE
Journal :
Evolutionary Multi-Criterion Optimization : 12th International conference, EMO 2023 Leiden, The Netherlands, March 20-24, 2023. Proccedings, EMO 2023-12th International Conference on Evolutionary Multi-Criterion Optimization, EMO 2023-12th International Conference on Evolutionary Multi-Criterion Optimization, Mar 2023, Leiden, Netherlands. pp.260-273, ⟨10.1007/978-3-031-27250-9_19⟩, Lecture Notes in Computer Science ISBN: 9783031272493
Accession number :
edsair.doi.dedup.....96996de824a2c902c8db2a8ea5b08ca7
Full Text :
https://doi.org/10.1007/978-3-031-27250-9_19⟩