Back to Search Start Over

The Motion of a Fluid-Rigid Ball System at the Zero Limit of the Rigid Ball Radius

Authors :
Takéo Takahashi
Ana L. Silvestre
Center for Computacional and Stochastic Mathematics (CEMAT)
Instituto Superior Técnico, Universidade Técnica de Lisboa (IST)
Robust control of infinite dimensional systems and applications (CORIDA)
Institut Élie Cartan de Nancy (IECN)
Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique de Lorraine (INPL)-Université Nancy 2-Université Henri Poincaré - Nancy 1 (UHP)-Institut National de Recherche en Informatique et en Automatique (Inria)-Laboratoire de Mathématiques et Applications de Metz (LMAM)
Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)-Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)
Institut Élie Cartan de Lorraine (IECL)
Université de Lorraine (UL)-Centre National de la Recherche Scientifique (CNRS)
CORIDA
Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Université Paul Verlaine - Metz (UPVM)-Centre National de la Recherche Scientifique (CNRS)-Inria Nancy - Grand Est
Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche en Informatique et en Automatique (Inria)-Université Henri Poincaré - Nancy 1 (UHP)-Université Nancy 2-Institut National Polytechnique de Lorraine (INPL)-Centre National de la Recherche Scientifique (CNRS)-Laboratoire de Mathématiques et Applications de Metz (LMAM)
Source :
Archive for Rational Mechanics and Analysis, Archive for Rational Mechanics and Analysis, Springer Verlag, 2014, 211 (3), pp.991-1012. ⟨10.1007/s00205-013-0696-7⟩, Archive for Rational Mechanics and Analysis, 2014, 211 (3), pp.991-1012. ⟨10.1007/s00205-013-0696-7⟩
Publication Year :
2013
Publisher :
Springer Science and Business Media LLC, 2013.

Abstract

We study the limiting motion of a system of rigid ball moving in a Navier–Stokes fluid in \({\mathbb{R}^3}\) as the radius of the ball goes to zero. Recently, Dashti and Robinson solved this problem in the two-dimensional case, in the absence of rotation of the ball (Dashti and Robinson in Arch Rational Mech Anal 200:285–312, 2011). This restriction was caused by the difficulty in obtaining appropriate uniform bounds on the second order derivatives of the fluid velocity when the rigid body can rotate. In this paper, we show how to obtain the required uniform bounds on the velocity fields in the three- dimensional case. These estimates then allow us to pass to the zero limit of the ball radius and show that the solution of the coupled system converges to the solution of the Navier–Stokes equations describing the motion of only fluid in the whole space. The trajectory of the centre of the ball converges to a fluid particle trajectory, which justifies the use of rigid tracers for finding Lagrangian paths of fluid flow.

Details

ISSN :
14320673 and 00039527
Volume :
211
Database :
OpenAIRE
Journal :
Archive for Rational Mechanics and Analysis
Accession number :
edsair.doi.dedup.....96d70cacb0ff1c2337af2f48090fdde4
Full Text :
https://doi.org/10.1007/s00205-013-0696-7