Back to Search
Start Over
Bi-allelic mutations in MYL1 cause a severe congenital myopathy
- Source :
- Human Molecular Genetics.
- Publication Year :
- 2018
- Publisher :
- Oxford University Press (OUP), 2018.
-
Abstract
- OBJECTIVE: Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, approximately 50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. METHODS: We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. RESULTS: We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain in both probands. A homozygous essential splice acceptor variant (c.479-2A>G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modeling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin essential light chain is critical for myofibre development and function. INTERPRETATION: Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with a severe congenital myopathy.
- Subjects :
- Male
0301 basic medicine
medicine.medical_specialty
Myosin Light Chains
Muscle Hypotonia
Myosin light-chain kinase
Myotonia Congenita
Biology
Alleles
Animals
Consanguinity
Disease Models, Animal
Exome
Homozygote
Humans
Muscle, Skeletal
Mutation
Myosin Heavy Chains
Pedigree
Zebrafish
03 medical and health sciences
Internal medicine
Myosin
Genetics
medicine
Molecular Biology
Genetics (clinical)
Muscle biopsy
medicine.diagnostic_test
Animal
Myotonia congenita
Skeletal muscle
Skeletal
General Medicine
medicine.disease
Congenital myopathy
Hypotonia
030104 developmental biology
Endocrinology
medicine.anatomical_structure
Disease Models
Muscle
General Article
medicine.symptom
Subjects
Details
- ISSN :
- 14602083 and 09646906
- Database :
- OpenAIRE
- Journal :
- Human Molecular Genetics
- Accession number :
- edsair.doi.dedup.....96f1bd94d9090c98cd1087064a4664c4