Back to Search
Start Over
Multimodel ensembles improve predictions of crop–environment–management interactions
- Source :
- Global Change Biology 24 (2018) 11, Global Change Biology, Global Change Biology, Wiley, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩, Global Change Biology, 24(11), 5072-5083, Global Change Biology, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩
- Publication Year :
- 2018
-
Abstract
- International audience; A recent innovation in assessment of climate change impact on agricultural production has been to use crop multi model ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e‐mean) and median (e‐median) often seem to predict quite well. However few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e‐mean and e‐median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e‐mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2‐6 models if best‐fit models are added first. Our theoretical results describe the ensemble using four parameters; average bias, model effect variance, environment effect variance and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e‐mean will always be smaller than MSEP averaged over models, and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e‐mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e‐mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.
- Subjects :
- [SDV.SA]Life Sciences [q-bio]/Agricultural sciences
010504 meteorology & atmospheric sciences
Mean squared error
Climate Change
[SDE.MCG]Environmental Sciences/Global Changes
Inverse
Water en Voedsel
Monotonic function
multi-model ensemble
Environment
High skill
01 natural sciences
crop models
ensemble mean
Statistics
Environmental Chemistry
Triticum
0105 earth and related environmental sciences
General Environmental Science
Mathematics
2. Zero hunger
ensemble median
Global and Planetary Change
WIMEK
Water and Food
Ecology
Ensemble average
Simulation modeling
Agriculture
04 agricultural and veterinary sciences
Variance (accounting)
prediction
Models, Theoretical
PE&RC
Plant Production Systems
multimodel ensemble
13. Climate action
Plantaardige Productiesystemen
climate change impact
040103 agronomy & agriculture
0401 agriculture, forestry, and fisheries
Water Systems and Global Change
Environment management
Subjects
Details
- Language :
- English
- ISSN :
- 13541013 and 13652486
- Database :
- OpenAIRE
- Journal :
- Global Change Biology 24 (2018) 11, Global Change Biology, Global Change Biology, Wiley, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩, Global Change Biology, 24(11), 5072-5083, Global Change Biology, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩
- Accession number :
- edsair.doi.dedup.....97bd0545567812cb7fead3312b18c99d
- Full Text :
- https://doi.org/10.1111/gcb.14411⟩