Back to Search Start Over

Multimodel ensembles improve predictions of crop–environment–management interactions

Authors :
Giacomo De Sanctis
Taru Palosuo
Davide Cammarano
Frank Ewert
Soora Naresh Kumar
Roberto C. Izaurralde
Gerrit Hoogenboom
Elias Fereres
Bing Liu
Thilo Streck
Mikhail A. Semenov
Ehsan Eyshi Rezaei
Peter J. Thorburn
Claudio O. Stöckle
Benjamin Dumont
Andrea Maiorano
Eckart Priesack
Iwan Supit
Heidi Horan
Kurt Christian Kersebaum
Pierre Martre
Margarita Garcia-Vila
Dominique Ripoche
Pierre Stratonovitch
Yujing Gao
Zhao Zhang
Ann-Kristin Koehler
Curtis D Jones
Fulu Tao
Claas Nendel
Christoph Müller
Andrew J. Challinor
Reimund P. Rötter
Mukhtar Ahmed
Senthold Asseng
Christine Girousse
Bruno Basso
Christian Klein
Pramod K. Aggarwal
Joost Wolf
Glenn J. Fitzgerald
Martin K. van Ittersum
Garry O'Leary
Belay T. Kassie
Christian Biernath
Sebastian Gayler
Daniel Wallach
Sara Minoli
AGroécologie, Innovations, teRritoires (AGIR)
Institut National de la Recherche Agronomique (INRA)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées
Écophysiologie des Plantes sous Stress environnementaux (LEPSE)
Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)
Nanjing Agricultural University
Department of Agricultural and Biological Engineering [Gainesville] (UF|ABE)
Institute of Food and Agricultural Sciences [Gainesville] (UF|IFAS)
University of Florida [Gainesville] (UF)-University of Florida [Gainesville] (UF)
Institute of Crop Science and Resource Conservation [Bonn] (INRES)
Rheinische Friedrich-Wilhelms-Universität Bonn
Leibniz-Zentrum für Agrarlandschaftsforschung = Leibniz Centre for Agricultural Landscape Research (ZALF)
Commonwealth Scientific and Industrial Research Organisation [Canberra] (CSIRO)
Plant Production Systems Group
Wageningen University and Research [Wageningen] (WUR)
Agriculture and Food Security (CCAFS)
Biological Systems Engineering
Washington State University (WSU)
Department of Agronomy
University of El-Tarf
Department of Earth and Environmental Sciences [East Lansing]
Michigan State University [East Lansing]
Michigan State University System-Michigan State University System
Plant Pathology
The James Hutton Institute
University of Leeds
Consultative Group on International Agricultural Research (CGIAR)
GMO Unit
European Food Safety Authority = Autorité européenne de sécurité des aliments
Department Terra & AgroBioChem, Gembloux Agro‐Bio Tech
Université de Liège
Center for Development Research
University of Córdoba
Agriculture Victoria Research
University of Melbourne
Institute of Soil Science and Land Evaluation
University of Hohenheim
Génétique Diversité et Ecophysiologie des Céréales (GDEC)
Institut National de la Recherche Agronomique (INRA)-Université Clermont Auvergne [2017-2020] (UCA [2017-2020])
University of Florida [Gainesville] (UF)
Department of Geographical Sciences
University of Maryland [College Park]
University of Maryland System-University of Maryland System
Texas A and M AgriLife Research
Texas A&M University System
Institute of landscape systems analysis
School of Earth and Environment
European Food Safety Authority (EFSA)
Potsdam Institute for Climate Impact Research (PIK)
Centre for Environment Science and Climate Resilient Agriculture (CESCRA)
Indian Agricultural Research Institute (IARI)
Department of Economic Development, Jobs, Transport and Resources (DEDJTR)
Natural Resources Institute Finland (LUKE)
Agroclim (AGROCLIM)
Institut National de la Recherche Agronomique (INRA)
University Medical Center Göttingen (UMG)
Computational and Systems Biology Department
Rothamsted Research
Water & Food and Water Systems & Global Change Group
Wageningen University
Institute of geographical sciences and natural resources research
Chinese Academy of Sciences [Changchun Branch] (CAS)
Plant Production Systems
State Key Laboratory of Earth Surface Processes and Resource Ecology
Beijing Normal University (BNU)
European Project: 267196,EC:FP7:PEOPLE,FP7-PEOPLE-2010-COFUND,AGREENSKILLS(2012)
Université de Toulouse (UT)-Université de Toulouse (UT)
Institut National de la Recherche Agronomique (INRA)-Centre international d'études supérieures en sciences agronomiques (Montpellier SupAgro)-Institut national d’études supérieures agronomiques de Montpellier (Montpellier SupAgro)
Nanjing Agricultural University (NAU)
Universidad de Córdoba = University of Córdoba [Córdoba]
Biotechnology and Biological Sciences Research Council (BBSRC)-Biotechnology and Biological Sciences Research Council (BBSRC)
Institute of geographical sciences and natural resources research [CAS] (IGSNRR)
Chinese Academy of Sciences [Beijing] (CAS)
Source :
Global Change Biology 24 (2018) 11, Global Change Biology, Global Change Biology, Wiley, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩, Global Change Biology, 24(11), 5072-5083, Global Change Biology, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩
Publication Year :
2018

Abstract

International audience; A recent innovation in assessment of climate change impact on agricultural production has been to use crop multi model ensembles (MMEs). These studies usually find large variability between individual models but that the ensemble mean (e‐mean) and median (e‐median) often seem to predict quite well. However few studies have specifically been concerned with the predictive quality of those ensemble predictors. We ask what is the predictive quality of e‐mean and e‐median, and how does that depend on the ensemble characteristics. Our empirical results are based on five MME studies applied to wheat, using different data sets but the same 25 crop models. We show that the ensemble predictors have quite high skill and are better than most and sometimes all individual models for most groups of environments and most response variables. Mean squared error of e‐mean decreases monotonically with the size of the ensemble if models are added at random, but has a minimum at usually 2‐6 models if best‐fit models are added first. Our theoretical results describe the ensemble using four parameters; average bias, model effect variance, environment effect variance and interaction variance. We show analytically that mean squared error of prediction (MSEP) of e‐mean will always be smaller than MSEP averaged over models, and will be less than MSEP of the best model if squared bias is less than the interaction variance. If models are added to the ensemble at random, MSEP of e‐mean will decrease as the inverse of ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value is not necessarily small, and so it is important to evaluate the predictive quality of e‐mean for each target population of environments. These results provide new information on the advantages of ensemble predictors, but also show their limitations.

Details

Language :
English
ISSN :
13541013 and 13652486
Database :
OpenAIRE
Journal :
Global Change Biology 24 (2018) 11, Global Change Biology, Global Change Biology, Wiley, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩, Global Change Biology, 24(11), 5072-5083, Global Change Biology, 2018, 24 (11), pp.5072-5083. ⟨10.1111/gcb.14411⟩
Accession number :
edsair.doi.dedup.....97bd0545567812cb7fead3312b18c99d
Full Text :
https://doi.org/10.1111/gcb.14411⟩