Back to Search Start Over

A Semi-supervised Stacked Autoencoder Approach for Network Traffic Classification

Authors :
Ons Aouedi
Dhruvjyoti Bagadthey
Kandaraj Piamrat
Laboratoire des Sciences du Numérique de Nantes (LS2N)
Université de Nantes - Faculté des Sciences et des Techniques
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)-IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)
Indian Institute of Technology Madras (IIT Madras)
IMT Atlantique Bretagne-Pays de la Loire (IMT Atlantique)
Institut Mines-Télécom [Paris] (IMT)-Institut Mines-Télécom [Paris] (IMT)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST)
Université de Nantes (UN)-Université de Nantes (UN)-École Centrale de Nantes (ECN)-Centre National de la Recherche Scientifique (CNRS)
Source :
ICNP, 2020 IEEE 28th International Conference on Network Protocols (ICNP), 2020 IEEE 28th International Conference on Network Protocols (ICNP), Oct 2020, Madrid, Spain. pp.1-6, ⟨10.1109/ICNP49622.2020.9259390⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

Accepted at IEEE ICNP HDR-Nets workshop 2020; Network traffic classification is an important task in modern communications. Several approaches have been proposed to improve the performance of differentiating among applications. However, most of them are based on supervised learning where only labeled data are used. In reality, a lot of datasets are partially labeled due to many reasons and unlabeled portions of the data, which can also provide informative characteristics, are ignored. To handle this issue, we propose a semi-supervised approach based on deep learning. We deployed deep learning because of its unique nature for solving problems, and its ability to take into account both labeled and unlabeled data. Moreover, it can also integrate feature extraction and classification into a single model. To achieve these goals, we propose an approach using stacked sparse autoencoder (SSAE) accompanied by de-noising and dropout techniques to improve the robustness of extracted features and prevent the over-fitting problem during the training process. The obtained results demonstrate a better performance than traditional models while keeping the whole procedure automated.

Details

Language :
English
Database :
OpenAIRE
Journal :
ICNP, 2020 IEEE 28th International Conference on Network Protocols (ICNP), 2020 IEEE 28th International Conference on Network Protocols (ICNP), Oct 2020, Madrid, Spain. pp.1-6, ⟨10.1109/ICNP49622.2020.9259390⟩
Accession number :
edsair.doi.dedup.....9819e3e6137cd4d087eeeecb53405db1
Full Text :
https://doi.org/10.1109/ICNP49622.2020.9259390⟩