Back to Search Start Over

Efficient and Accurate Algorithm for the Full Modal Green's Kernel of the Scalar Wave Equation in Helioseismology

Authors :
Ha Pham
Florian Faucher
Damien Fournier
Hélène Barucq
Laurent Gizon
Advanced 3D Numerical Modeling in Geophysics (Magique 3D)
Laboratoire de Mathématiques et de leurs Applications [Pau] (LMAP)
Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Université de Pau et des Pays de l'Adour (UPPA)-Centre National de la Recherche Scientifique (CNRS)-Inria Bordeaux - Sud-Ouest
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
Faculty of Mathematics [Vienna]
University of Vienna [Vienna]
Max-Planck-Institut für Sonnensystemforschung = Max Planck Institute for Solar System Research (MPS)
Max-Planck-Gesellschaft
Max Planck Institute for Solar System Research (MPS)
Source :
SIAM Journal on Applied Mathematics, SIAM Journal on Applied Mathematics, 2020, 80 (6), pp.2657-2683. ⟨10.1137/20M1336709⟩, SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2020, 80 (6), pp.2657-2683. ⟨10.1137/20M1336709⟩
Publication Year :
2020
Publisher :
HAL CCSD, 2020.

Abstract

International audience; In this work, we provide an algorithm to compute efficiently and accurately the full outgoing modal Green's kernel for the scalar wave equation in local helioseismology under spherical symmetry. Due to the high computational cost of a full Green's function, current helioseismic studies rely on single-source computations. However, a more realistic modelization of the helioseismic products (cross-covariance and power spectrum) requires the full Green's kernel. In the classical approach, the Dirac source is discretized and one simulation gives the Green's function on a line. Here, we propose a two-step algorithm which, with two simulations, provides the full kernel on the domain. Moreover, our method is more accurate, as the singularity of the solution due to the Dirac source is described exactly. In addition, it is coupled with the exact Dirichlet-to-Neumann boundary condition, providing optimal accuracy in approximating the outgoing Green's kernel, which we demonstrate in our experiments. In addition, we show that high-frequency approximations of the nonlocal radiation boundary conditions can represent accurately the helioseismic products.

Details

Language :
English
ISSN :
00361399
Database :
OpenAIRE
Journal :
SIAM Journal on Applied Mathematics, SIAM Journal on Applied Mathematics, 2020, 80 (6), pp.2657-2683. ⟨10.1137/20M1336709⟩, SIAM Journal on Applied Mathematics, Society for Industrial and Applied Mathematics, 2020, 80 (6), pp.2657-2683. ⟨10.1137/20M1336709⟩
Accession number :
edsair.doi.dedup.....987b0c4c0e212fca326069176167665c
Full Text :
https://doi.org/10.1137/20M1336709⟩