Back to Search
Start Over
A Novel Integrated Workflow for Isolation Solvent Selection Using Prediction and Modeling
- Source :
- Organic Process Research & Development
- Publication Year :
- 2021
- Publisher :
- American Chemical Society (ACS), 2021.
-
Abstract
- A predictive tool was developed to aid process design and to rationally select optimal solvents for isolation of active pharmaceutical ingredients. The objective was to minimize the experimental work required to design a purification process by (i) starting from a rationally selected crystallization solvent based on maximizing yield and minimizing solvent consumption (with the constraint of maintaining a suspension density which allows crystal suspension); (ii) for the crystallization solvent identified from step 1, a list of potential isolation solvents (selected based on a series of constraints) is ranked, based on thermodynamic consideration of yield and predicted purity using a mass balance model; and (iii) the most promising of the predicted combinations is verified experimentally, and the process conditions are adjusted to maximize impurity removal and maximize yield, taking into account mass transport and kinetic considerations. Here, we present a solvent selection workflow based on logical solvent ranking supported by solubility predictions, coupled with digital tools to transfer material property information between operations to predict the optimal purification strategy. This approach addresses isolation, preserving the particle attributes generated during crystallization, taking account of the risks of product precipitation and particle dissolution during washing, and the selection of solvents, which are favorable for drying.
- Subjects :
- purification
crystallization
solubility prediction
workflow procedure
Process design
010402 general chemistry
01 natural sciences
Article
RS
law.invention
law
QD
Physical and Theoretical Chemistry
Solubility
Crystallization
Process engineering
Suspension (vehicle)
Dissolution
solvent selection
filtration, washing, drying
010405 organic chemistry
business.industry
Organic Chemistry
0104 chemical sciences
Solvent
Scientific method
Yield (chemistry)
business
isolation
Subjects
Details
- ISSN :
- 1520586X and 10836160
- Volume :
- 25
- Database :
- OpenAIRE
- Journal :
- Organic Process Research & Development
- Accession number :
- edsair.doi.dedup.....98afc1418af854a566bbaaad030b2e13
- Full Text :
- https://doi.org/10.1021/acs.oprd.0c00532