Back to Search Start Over

Transcriptional profiling of cecal gene expression in probiotic- and Salmonella- challenged neonatal chicks

Authors :
Billy M. Hargis
S. E. Higgins
A. D. Wolfenden
Tom E. Porter
Guillermo Tellez
Source :
Poultry Science. 90:901-913
Publication Year :
2011
Publisher :
Elsevier BV, 2011.

Abstract

Probiotics are currently used to improve health and reduce enteric pathogens in poultry. However, the mechanisms by which they reduce or prevent disease are not known. Salmonella are intracellular pathogens that cause acute gastroenteritis in humans, and infections by nontyphoid species of Salmonella also can result in diarrhea, dehydration, and depression in poultry. Frequently, however, no clinical signs of infection are apparent in poultry flocks. In this study, day-of-hatch chicks were challenged with Salmonella enterica serovar Enteritidis (SE) and treated 1 h later with a poultry-derived, Lactobacillus-based probiotic culture (FloraMax-B11, Pacific Vet Group USA Inc., Fayetteville, AR). Cecae were collected 12 and 24 h posttreatment for Salmonella detection and RNA isolation for microarray analysis of gene expression. At both 12 and 24 h, SE was significantly reduced in chicks treated with the probiotic as compared with the birds challenged with only SE (P < 0.05). Microarray analysis revealed gene expression differences among all treatment groups. At 12 h, 170 genes were expressed at significantly different levels (P < 0.05), with a minimum difference in expression of 1.2-fold. At 24 h, the number of differentially regulated genes with a minimum 1.2-fold change was 201. Pathway analysis revealed that at both time points, genes associated with the nuclear factor kappa B complex, as well as genes involved in apoptosis, were significantly regulated. Based on this analysis, probiotic-induced differential regulation of the genes growth arrest-specific 2 (GAS2) and cysteine-rich, angiogenic inducer, 61 (CYR61) may result in increased apoptosis in the cecae of chicks. Because Salmonella is an intracellular pathogen, we suggest that increased apoptosis may be a mechanism by which the probiotic culture reduces Salmonella infection.

Details

ISSN :
00325791
Volume :
90
Database :
OpenAIRE
Journal :
Poultry Science
Accession number :
edsair.doi.dedup.....99c600a174c9fd572d9c742bead8768a
Full Text :
https://doi.org/10.3382/ps.2010-00907