Back to Search Start Over

Foscarnet, an inhibitor of the sodium-phosphate cotransporter NaPi-IIa, inhibits phosphorylation of glycogen synthase kinase-3β by lithium in the rat kidney cortex

Authors :
Tatsuya Kawasaki
Yuichi Uwai
Tomohiro Nabekura
Source :
Drug Metabolism and Pharmacokinetics. 31:256-259
Publication Year :
2016
Publisher :
Elsevier BV, 2016.

Abstract

Lithium, which is used in the treatment of and prophylaxis for bipolar disease, inhibits glycogen synthase kinase-3β (GSK3β) by producing its phosphorylated form (p-GSK3β). GSK3β plays a role in apoptosis and some kinds of acute kidney injuries, and the formation of p-GSK3β is considered to contribute to protection against acute kidney injury. We previously reported that the sodium-phosphate cotransporter NaPi-IIa (SLC34A1) mediated the reabsorption of lithium in the rat kidney. In the present study, the phosphorylation status of GSK3β in the kidney cortex of rats administered lithium chloride and foscarnet, a typical inhibitor of NaPi-IIa, was examined using Western blotting. Under a 2-h infusion of lithium chloride, the plasma concentration of lithium was 1.06 mEq/l, and its renal clearance was calculated as 1.18 ml/min/kg, which was 29.6% of creatinine clearance. The abundance of p-GSK3β in the kidney cortex was augmented by the administration of lithium. The simultaneous infusion of foscarnet increased the renal clearance of lithium and its ratio to creatinine clearance as well as the urinary excretion of phosphate. Foscarnet also inhibited the lithium-induced phosphorylation of GSK3β. These results suggest that the reabsorption of lithium by NaPi-IIa triggers the phosphorylation of GSK3β in the rat kidney cortex.

Details

ISSN :
13474367
Volume :
31
Database :
OpenAIRE
Journal :
Drug Metabolism and Pharmacokinetics
Accession number :
edsair.doi.dedup.....99d3ab81353b54ecdbe1fa51c3ffe825
Full Text :
https://doi.org/10.1016/j.dmpk.2016.02.003