Back to Search Start Over

Representing activities with layers of velocity statistics for multiple human action recognition in surveillance applications

Authors :
Eduardo Romero
Fabio Martínez
Antoine Manzanera
CIM&Lab
Universidad Nacional de Colombia [Bogotà] (UNAL)
Robotique et Vision (RV)
Unité d'Informatique et d'Ingénierie des Systèmes (U2IS)
École Nationale Supérieure de Techniques Avancées (ENSTA Paris)-École Nationale Supérieure de Techniques Avancées (ENSTA Paris)
Manzanera, Antoine
Source :
IS&T/SPIE Electronic Imaging, IS&T/SPIE Electronic Imaging, Feb 2014, San Francisco, United States
Publication Year :
2014
Publisher :
SPIE, 2014.

Abstract

International audience; A novel action recognition strategy in a video-surveillance context is herein presented. The method starts by computing a multiscale dense optical flow, from which spatial apparent movement regions are clustered as Regions of Interest (RoIs). Each ROI is summarized at each time by an orientation histogram. Then, a multilayer structure dynamically stores the orientation histograms associated to any of the found RoI in the scene and a set of cumulated temporal statistics is used to label that RoI using a previously trained support vector machine model. The method is evaluated using classic human action and public surveillance datasets, with two different tasks: (1) classification of short sequences containing individual actions, and (2) Frame-level recognition of human action in long sequences containing simultaneous actions. The accuracy measurements are: 96.7% (sequence rate) for the classification task, and 95.3% (frame rate) for recognition in surveillance scenes.

Details

ISSN :
0277786X
Database :
OpenAIRE
Journal :
SPIE Proceedings
Accession number :
edsair.doi.dedup.....99f45dfd561006389332eaa63ab4e11b
Full Text :
https://doi.org/10.1117/12.2042588