Back to Search
Start Over
AMP deamination is sufficient to replicate an atrophy-like metabolic phenotype in skeletal muscle
- Source :
- Metabolism
- Publication Year :
- 2021
-
Abstract
- Background Skeletal muscle atrophy, whether caused by chronic disease, acute critical illness, disuse or aging, is characterized by tissue-specific decrease in oxidative capacity and broad alterations in metabolism that contribute to functional decline. However, the underlying mechanisms responsible for these metabolic changes are largely unknown. One of the most highly upregulated genes in atrophic muscle is AMP deaminase 3 (AMPD3: AMP → IMP + NH3), which controls the content of intracellular adenine nucleotides (AdN; ATP + ADP + AMP). Given the central role of AdN in signaling mitochondrial gene expression and directly regulating metabolism, we hypothesized that overexpressing AMPD3 in muscle cells would be sufficient to alter their metabolic phenotype similar to that of atrophic muscle. Methods AMPD3 and GFP (control) were overexpressed in mouse tibialis anterior (TA) muscles via plasmid electroporation and in C2C12 myotubes using adenovirus vectors. TA muscles were excised one week later, and AdN were quantified by UPLC. In myotubes, targeted measures of AdN, AMPK/PGC-1α/mitochondrial protein synthesis rates, unbiased metabolomics, and transcriptomics by RNA sequencing were measured after 24 h of AMPD3 overexpression. Media metabolites were measured as an indicator of net metabolic flux. At 48 h, the AMPK/PGC-1α/mitochondrial protein synthesis rates, and myotube respiratory function/capacity were measured. Results TA muscles overexpressing AMPD3 had significantly less ATP than contralateral controls (−25%). In myotubes, increasing AMPD3 expression for 24 h was sufficient to significantly decrease ATP concentrations (−16%), increase IMP, and increase efflux of IMP catabolites into the culture media, without decreasing the ATP/ADP or ATP/AMP ratios. When myotubes were treated with dinitrophenol (mitochondrial uncoupler), AMPD3 overexpression blunted decreases in ATP/ADP and ATP/AMP ratios but exacerbated AdN degradation. As such, pAMPK/AMPK, pACC/ACC, and phosphorylation of AMPK substrates, were unchanged by AMPD3 at this timepoint. AMPD3 significantly altered 191 out of 639 detected intracellular metabolites, but only 30 transcripts, none of which encoded metabolic enzymes. The most altered metabolites were those within purine nucleotide, BCAA, glycolysis, and ceramide metabolic pathways. After 48 h, AMPD3 overexpression significantly reduced pAMPK/AMPK (−24%), phosphorylation of AMPK substrates (−14%), and PGC-1α protein (−22%). Moreover, AMPD3 significantly reduced myotube mitochondrial protein synthesis rates (−55%), basal ATP synthase-dependent (−13%), and maximal uncoupled oxygen consumption (−15%). Conclusions Increased expression of AMPD3 significantly decreased mitochondrial protein synthesis rates and broadly altered cellular metabolites in a manner similar to that of atrophic muscle. Importantly, the changes in metabolites occurred prior to reductions in AMPK signaling, gene expression, and mitochondrial protein synthesis, suggesting metabolism is not dependent on reductions in oxidative capacity, but may be consequence of increased AMP deamination. Therefore, AMP deamination in skeletal muscle may be a mechanism that alters the metabolic phenotype of skeletal muscle during atrophy and could be a target to improve muscle function during muscle wasting.
- Subjects :
- medicine.medical_specialty
Endocrinology, Diabetes and Metabolism
Article
AMP Deaminase
Mice
Endocrinology
Adenosine Triphosphate
AMP-activated protein kinase
Internal medicine
medicine
Myocyte
Animals
Glycolysis
Muscle, Skeletal
biology
Chemistry
Skeletal muscle
AMPK
AMP deaminase
Muscle atrophy
Adenosine Monophosphate
Adenosine Diphosphate
Muscular Atrophy
medicine.anatomical_structure
Phenotype
Mitochondrial biogenesis
Deamination
biology.protein
medicine.symptom
Subjects
Details
- ISSN :
- 15328600
- Volume :
- 123
- Database :
- OpenAIRE
- Journal :
- Metabolism: clinical and experimental
- Accession number :
- edsair.doi.dedup.....9a1ef0d06e5e3a3af1a1401b5c427d5b