Back to Search
Start Over
Symplectic Kloosterman sums and Poincaré series
- Source :
- The Ramanujan Journal. 57:707-753
- Publication Year :
- 2021
- Publisher :
- Springer Science and Business Media LLC, 2021.
-
Abstract
- We prove power-saving bounds for general Kloosterman sums on $\operatorname{Sp}(4)$ associated to all Weyl elements via a stratification argument coupled with $p$-adic stationary phase methods. We relate these Kloosterman sums to the Fourier coefficients of $\operatorname{Sp}(4)$ Poincar\'e series.<br />Comment: Published version
- Subjects :
- Pure mathematics
Algebra and Number Theory
Mathematics - Number Theory
Mathematics::Number Theory
Stratification (mathematics)
symbols.namesake
Number theory
Stationary phase
Fourier analysis
Poincaré series
11L05, 11F30
FOS: Mathematics
symbols
Kloosterman sum
Number Theory (math.NT)
Mathematics::Representation Theory
Fourier series
Symplectic geometry
Mathematics
Subjects
Details
- ISSN :
- 15729303 and 13824090
- Volume :
- 57
- Database :
- OpenAIRE
- Journal :
- The Ramanujan Journal
- Accession number :
- edsair.doi.dedup.....9a225bd8528960e53b7338f8ea56149d
- Full Text :
- https://doi.org/10.1007/s11139-021-00498-5