Back to Search Start Over

Can AI models capture natural language argumentation?

Authors :
Leila Amgoud
Henri Prade
Argumentation, Décision, Raisonnement, Incertitude et Apprentissage (IRIT-ADRIA)
Institut de recherche en informatique de Toulouse (IRIT)
Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées-Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse - Jean Jaurès (UT2J)-Université Toulouse III - Paul Sabatier (UT3)
Université Fédérale Toulouse Midi-Pyrénées-Centre National de la Recherche Scientifique (CNRS)-Institut National Polytechnique (Toulouse) (Toulouse INP)
Université Fédérale Toulouse Midi-Pyrénées-Université Toulouse 1 Capitole (UT1)
Université Fédérale Toulouse Midi-Pyrénées
Source :
International Journal of Cognitive Informatics and Natural Intelligence, International Journal of Cognitive Informatics and Natural Intelligence, IGI Global, 2012, 6 (3), pp.19-32. ⟨10.4018/jcini.2012070102⟩
Publication Year :
2012
Publisher :
HAL CCSD, 2012.

Abstract

Formal AI models of argumentation define arguments as reasons that support claims (which may be beliefs, decisions, actions, etc.). Such arguments may be attacked by other arguments. The main issue is then to identify the accepted ones. Several semantics were thus proposed for evaluating the arguments. Works in linguistics focus mainly on understanding the notion of argument, identifying its types, and describing different forms of counter-argumentation. This paper advocates that such typologies are instrumental for capturing real argumentations. It shows that some of the forms cannot be handled properly by AI models. Finally, it shows that the use of square of oppositions (a very old logical device) illuminates the interrelations between the different forms of argumentation. Copyright © 2012, IGI Global.

Details

Language :
English
ISSN :
15573958 and 15573966
Database :
OpenAIRE
Journal :
International Journal of Cognitive Informatics and Natural Intelligence, International Journal of Cognitive Informatics and Natural Intelligence, IGI Global, 2012, 6 (3), pp.19-32. ⟨10.4018/jcini.2012070102⟩
Accession number :
edsair.doi.dedup.....9a319bfd3468ba4bc1bb3641df6e9914