Back to Search
Start Over
Encoding equivariant commutativity via operads
- Source :
- Algebr. Geom. Topol. 18, no. 5 (2018), 2919-2962
- Publication Year :
- 2018
- Publisher :
- Mathematical Sciences Publishers, 2018.
-
Abstract
- In this paper, we prove a conjecture of Blumberg and Hill regarding the existence of $N_\infty$-operads associated to given sequences $\mathcal{F} = (\mathcal{F}_n)_{n \in \mathbb{N}}$ of families of subgroups of $G\times \Sigma_n$. For every such sequence, we construct a model structure on the category of $G$-operads, and we use these model structures to define $E_\infty^{\mathcal{F}}$-operads, generalizing the notion of an $N_\infty$-operad, and to prove the Blumberg-Hill conjecture. We then explore questions of admissibility, rectification, and preservation under left Bousfield localization for these $E_\infty^{\mathcal{F}}$-operads, obtaining some new results as well for $N_\infty$-operads.<br />Comment: This version has been accepted to Algebraic & Geometric Topology
- Subjects :
- Teoria de models
Pure mathematics
Model category
Teoria de l'homotopia
Structure (category theory)
01 natural sciences
Mathematics::Algebraic Topology
Mathematics::K-Theory and Homology
Mathematics::Quantum Algebra
Mathematics::Category Theory
0103 physical sciences
FOS: Mathematics
Algebraic Topology (math.AT)
Model theory
Mathematics - Algebraic Topology
0101 mathematics
55U35
Commutative property
Mathematics
Sequence
Conjecture
model category
Homotopy category
010102 general mathematics
equivariant homotopy theory
homotopy category
55P91
operads
55P60
Homotopy theory
55P42
Equivariant map
equivariant spectra
55P48
010307 mathematical physics
Geometry and Topology
Bousfield localization
Subjects
Details
- Language :
- English
- Database :
- OpenAIRE
- Journal :
- Algebr. Geom. Topol. 18, no. 5 (2018), 2919-2962
- Accession number :
- edsair.doi.dedup.....9a5e10261f769553541ba82af4d530eb