Back to Search Start Over

Alternating subgroups of Coxeter groups and their spinor extensions

Authors :
L. Poulain d'Andecy
Oleg Ogievetsky
Centre de Physique Théorique - UMR 6207 (CPT)
Centre National de la Recherche Scientifique (CNRS)-Université de Toulon (UTLN)-Université de Provence - Aix-Marseille 1-Université de la Méditerranée - Aix-Marseille 2
Centre de Physique Théorique - UMR 7332 (CPT)
Aix Marseille Université (AMU)-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Université de la Méditerranée - Aix-Marseille 2-Université de Provence - Aix-Marseille 1-Université de Toulon (UTLN)-Centre National de la Recherche Scientifique (CNRS)
Source :
Journal of Pure and Applied Algebra, Journal of Pure and Applied Algebra, Elsevier, 2013, 217 (11), pp.2198-2211. ⟨10.1016/j.jpaa.2013.02.007⟩, Journal of Pure and Applied Algebra, 2013, 217 (11), pp.2198-2211. ⟨10.1016/j.jpaa.2013.02.007⟩
Publication Year :
2011

Abstract

Let G be a discrete Coxeter group, G + its alternating subgroup and G + the spinor cover of G + . A presentation of the groups G + and G + is proved for an arbitrary Coxeter system ( G , S ) ; the generators are related to edges of the Coxeter graph. Results of the Coxeter–Todd algorithm–with this presentation–for the chains of alternating groups of types A, B and D are given.

Details

Language :
English
ISSN :
00224049 and 18731376
Database :
OpenAIRE
Journal :
Journal of Pure and Applied Algebra, Journal of Pure and Applied Algebra, Elsevier, 2013, 217 (11), pp.2198-2211. ⟨10.1016/j.jpaa.2013.02.007⟩, Journal of Pure and Applied Algebra, 2013, 217 (11), pp.2198-2211. ⟨10.1016/j.jpaa.2013.02.007⟩
Accession number :
edsair.doi.dedup.....9a61285983b26fd1dd0bad908442eb49
Full Text :
https://doi.org/10.1016/j.jpaa.2013.02.007⟩