Back to Search Start Over

Critical dynamics of the binary system nitroethane/3-methylpentane: relaxation rate and scaling function

Authors :
Leluk K
Rudowski M
Udo Kaatze
I. Iwanowski
Source :
The journal of physical chemistry. A. 110(13)
Publication Year :
2006

Abstract

Shear viscosity and dynamic light scattering measurements as well as ultrasonic spectrometry studies of the nitroethane/3-methylpentane mixture of critical composition have been performed at various temperatures near the critical temperature, T(c). A combined evaluation of the shear viscosity and mutual diffusion coefficient data yielded the amplitude, xi(0), of the fluctuation correlation length, xi, assumed to follow power law, and the relaxation rate, Gamma, or order parameter fluctuations. The latter was found to follow power law with the theoretical universal exponent. The amplitudes xi(0) = 0.23 +/- 0.02 nm and Gamma(0) = (125 +/- 5) x 10(9) s(-1) nicely agree with literature values. Using the relaxation rates resulting from the viscosity and diffusion coefficient data, the scaling function has been calculated assuming the ultrasonic spectra to be composed of a critical part and a noncritical background contribution. The experimental scaling function fits well to the predictions of the Bhattacharjee-Ferrell dynamic scaling model with scaled half-attenuation frequency, Omega(BF)1/2= 2.1. The amplitude of the sonic spectra yields the amount |g| = 0.26 of the adiabatic coupling constant, g, in fair agreement with -0.29 from another thermodynamic relation.

Details

ISSN :
10895639
Volume :
110
Issue :
13
Database :
OpenAIRE
Journal :
The journal of physical chemistry. A
Accession number :
edsair.doi.dedup.....9a644b29ef58665ccce25b95672a11f1