Back to Search Start Over

BEN-solo factors partition active chromatin to ensure proper gene activation in Drosophila

Authors :
Jiayu Wen
Paul Schedl
Malin Ueberschär
Chun Zhang
Shu Kondo
Tsutomu Aoki
Eric C. Lai
Huazhen Wang
Qi Dai
Source :
Nature Communications, Vol 10, Iss 1, Pp 1-16 (2019), Nature Communications
Publication Year :
2019
Publisher :
Nature Portfolio, 2019.

Abstract

The Drosophila genome encodes three BEN-solo proteins including Insensitive (Insv), Elba1 and Elba2 that possess activities in transcriptional repression and chromatin insulation. A fourth protein—Elba3—bridges Elba1 and Elba2 to form an ELBA complex. Here, we report comprehensive investigation of these proteins in Drosophila embryos. We assess common and distinct binding sites for Insv and ELBA and their genetic interdependencies. While Elba1 and Elba2 binding generally requires the ELBA complex, Elba3 can associate with chromatin independently of Elba1 and Elba2. We further demonstrate that ELBA collaborates with other insulators to regulate developmental patterning. Finally, we find that adjacent gene pairs separated by an ELBA bound sequence become less differentially expressed in ELBA mutants. Transgenic reporters confirm the insulating activity of ELBA- and Insv-bound sites. These findings define ELBA and Insv as general insulator proteins in Drosophila and demonstrate the functional importance of insulators to partition transcription units.<br />The BEN-solo proteins—including Insensitive (Insv), Elba1 and Elba2—function in both transcriptional repression and chromatin insulation. Here, the authors investigate the role of these proteins in Drosophila embryos, finding that ELBA and Insv function as general insulators and partition active chromatin to ensure proper gene activation in Drosophila.

Details

Language :
English
ISSN :
20411723
Volume :
10
Issue :
1
Database :
OpenAIRE
Journal :
Nature Communications
Accession number :
edsair.doi.dedup.....9a7deecf43b3ef87d647e37773d74971