Back to Search Start Over

Generalized topographic block model

Authors :
Gérard Govaert
Mohamed Nadif
Rodolphe Priam
Southampton Statistical Sciences Research Institute (S3RI)
University of Southampton
Laboratoire d'Informatique Paris Descartes (LIPADE - EA 2517)
Université Paris Descartes - Paris 5 (UPD5)
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] (Heudiasyc)
Université de Technologie de Compiègne (UTC)-Centre National de la Recherche Scientifique (CNRS)
University of Southampton [Southampton]
Laboratoire d'Informatique Paris Descartes ( LIPADE - EA 2517 )
Université Paris Descartes - Paris 5 ( UPD5 )
Heuristique et Diagnostic des Systèmes Complexes [Compiègne] ( Heudiasyc )
Université de Technologie de Compiègne ( UTC ) -Centre National de la Recherche Scientifique ( CNRS )
Source :
Neurocomputing, Neurocomputing, Elsevier, 2016, 173, pp.442--449, Neurocomputing, 2016, 173, pp.442--449
Publication Year :
2016
Publisher :
HAL CCSD, 2016.

Abstract

Co-clustering leads to parsimony in data visualisation with a number of parameters dramatically reduced in comparison to the dimensions of the data sample. Herein, we propose a new generalized approach for nonlinear mapping by a re-parameterization of the latent block mixture model. The densities modeling the blocks are in an exponential family such that the Gaussian, Bernoulli and Poisson laws are particular cases. The inference of the parameters is derived from the block expectation–maximization algorithm with a Newton–Raphson procedure at the maximization step. Empirical experiments with textual data validate the interest of our generalized model.

Details

Language :
English
ISSN :
09252312
Database :
OpenAIRE
Journal :
Neurocomputing, Neurocomputing, Elsevier, 2016, 173, pp.442--449, Neurocomputing, 2016, 173, pp.442--449
Accession number :
edsair.doi.dedup.....9a8805e336d13b966025c0c9c3087388