Back to Search
Start Over
Altered motility of Caulobacter Crescentus in viscous and viscoelastic media
- Source :
- BMC Microbiology
- Publisher :
- Springer Nature
-
Abstract
- Background Motility of flagellated bacteria depends crucially on their organelles such as flagella and pili, as well as physical properties of the external medium, such as viscosity and matrix elasticity. We studied the motility of wild-type and two mutant strains of Caulobacter crescentus swarmer cells in two different types of media: a viscous and hyperosmotic glycerol-growth medium mixture and a viscoelastic growth medium, containing polyethylene glycol or polyethylene oxide of different defined sizes. Results For all three strains in the medium containing glycerol, we found linear drops in percentage of motile cells and decreases in speed of those that remained motile to be inversely proportional to viscosity. The majority of immobilized cells lost viability, evidenced by their membrane leakage. In the viscoelastic media, we found less loss of motility and attenuated decrease of swimming speed at shear viscosity values comparable to the viscous medium. In both types of media, we found more severe loss in percentage of motile cells of wild-type than the mutants without pili, indicating that the interference of pili with flagellated motility is aggravated by increased viscosity. However, we found no difference in swimming speed among all three strains under all test conditions for the cells that remained motile. Finally, the viscoelastic medium caused no significant change in intervals between flagellar motor switches unless the motor stalled. Conclusion Hyperosmotic effect causes loss of motility and cell death. Addition of polymers into the cell medium also causes loss of motility due to increased shear viscosity, but the majority of immobilized bacteria remain viable. Both viscous and viscoelastic media alter the motility of flagellated bacteria without affecting the internal regulation of their motor switching behavior. Electronic supplementary material The online version of this article (doi:10.1186/s12866-014-0322-3) contains supplementary material, which is available to authorized users.
- Subjects :
- Microbiology (medical)
Hyperosmolarity
Motility
Flagellum
Microbiology
Viscoelasticity
Pilus
chemistry.chemical_compound
Viscosity
Osmotic Pressure
Caulobacter crescentus
Osmotic pressure
Viscous agent
Growth medium
Microbial Viability
biology
biology.organism_classification
Elasticity
Culture Media
chemistry
Hydrodynamics
Biophysics
Bacterial motility
Rheology
Locomotion
Research Article
Subjects
Details
- Language :
- English
- ISSN :
- 14712180
- Volume :
- 14
- Issue :
- 1
- Database :
- OpenAIRE
- Journal :
- BMC Microbiology
- Accession number :
- edsair.doi.dedup.....9ac8c654ae3aaa25de837815c35448e7
- Full Text :
- https://doi.org/10.1186/s12866-014-0322-3