Back to Search Start Over

Efficient statistical face recognition across pose using Local Binary Patterns and Gabor wavelets

Authors :
Ngoc-Son Vu
Alice Caplier
Vesalis (Vesalis)
PME
GIPSA - Géométrie, Perception, Images, Geste (GIPSA-GPIG)
Département Images et Signal (GIPSA-DIS)
Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Grenoble Images Parole Signal Automatique (GIPSA-lab)
Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)-Université Stendhal - Grenoble 3-Université Pierre Mendès France - Grenoble 2 (UPMF)-Université Joseph Fourier - Grenoble 1 (UJF)-Institut polytechnique de Grenoble - Grenoble Institute of Technology (Grenoble INP )-Centre National de la Recherche Scientifique (CNRS)
OSEO
Biorafale
Caplier, Alice
Source :
Proceedings, IEEE 3rd Int. Conf. on Biometrics: theory, applications and systems, IEEE 3rd Int. Conf. on Biometrics: theory, applications and systems, Sep 2009, Washington, DC, United States
Publication Year :
2009
Publisher :
IEEE, 2009.

Abstract

International audience; The performance of face recognition systems can be dramatically degraded when the pose of the probe face is different from the gallery face. In this paper, we present a pose robust face recognition model, centered on modeling how face patches change in appearance as the viewpoint varies. We present a novel model based on two robust local appearance descriptors, Gabor wavelets and Local Binary Patterns (LBP). These two descriptors have been widely exploited for face recognition and different strategies for combining them have been investigated. However, to the best of our knowledge, all existing combination methods are designed for frontal face recognition. We introduce a local statistical framework for face recognition across pose variations, given only one frontal reference image. The method is evaluated on the Feret pose dataset and experimental results show that we achieve very high recognition rates over the wide range of pose variations presented in this challenging dataset.

Details

Database :
OpenAIRE
Journal :
2009 IEEE 3rd International Conference on Biometrics: Theory, Applications, and Systems
Accession number :
edsair.doi.dedup.....9b08f0a9bf38c95a57a1d3d5b99b6756
Full Text :
https://doi.org/10.1109/btas.2009.5339041