Back to Search Start Over

Convergence of some horocyclic deformations to the Gardiner-Masur boundary

Authors :
Vincent Alberge
Institut de Recherche Mathématique Avancée (IRMA)
Centre National de la Recherche Scientifique (CNRS)-Université de Strasbourg (UNISTRA)
ANR-12-BS01-0009,Finsler,Géométrie de Finsler et applications(2012)
Source :
Annales Academiae Scientiarum Fennicae. Mathematica, Annales Academiae Scientiarum Fennicae. Mathematica, Academia Scientiarum Fennica, 2016, ⟨10.5186/aasfm.2016.4132⟩
Publication Year :
2016
Publisher :
Finnish Academy of Science and Letters, 2016.

Abstract

International audience; We introduce a deformation of Riemann surfaces and we are interested in the convergence of this deformation to a point of the Gardiner-masur boundary of Teichmueller space. This deformation, which we call the horocyclic deformation, is directed by a projective measured foliation and belongs to a certain horocycle in a Teichmueller disc. Using works of Marden and Masur and works of Miyachi, we show that the horocyclic deformation converges if its direction is given by a simple closed curve or a uniquely ergodic measured foliation.

Details

ISSN :
17982383 and 1239629X
Volume :
41
Database :
OpenAIRE
Journal :
Annales Academiae Scientiarum Fennicae Mathematica
Accession number :
edsair.doi.dedup.....9b0e9ec469a854e86961b092c4de73cf
Full Text :
https://doi.org/10.5186/aasfm.2016.4132