Back to Search Start Over

The biophysical climate mitigation potential of boreal peatlands during the growing season

Authors :
Mats Nilsson
Alan G. Barr
Mika Aurela
Trofim C. Maximov
Elena D. Lapshina
Jiquan Chen
Hiroki Iwata
Philip Marsh
Masahito Ueyama
Silvie Harder
Christopher Schulze
Elyn Humphreys
Pavel Alekseychik
Martin Wilmking
Brian D. Amiro
Ivan Mammarella
Daniel F. Nadeau
Annalea Lohila
Lawrence B. Flanagan
T. Andrew Black
Juha-Pekka Tuovinen
Hiroki Ikawa
Eugénie S. Euskirchen
Manuel Helbig
Benjamin R. K. Runkle
Achim Grelle
Ankur R. Desai
Ian B. Strachan
Michelle Garneau
Allison L. Dunn
Richard M. Petrone
Eeva-Stiina Tuittila
Pierre-Erik Isabelle
Matthias Peichl
Mika Korkiakoski
Thomas Friborg
Rachhpal S. Jassal
Juliya Kurbatova
Paul A. Moore
Erin M. Nicholls
William L. Quinton
Pierre Taillardat
Anatoly S. Prokushkin
Sean K. Carey
Oliver Sonnentag
Lars Kutzbach
Jinshu Chi
Vyacheslav Zyrianov
Anders Lindroth
Jessica Turner
Michal Heliasz
Timo Vesala
Mikaell Ottosson Löfvenius
James M. Waddington
Takeshi Ohta
Andrej Varlagin
Nigel T. Roulet
Institute for Atmospheric and Earth System Research (INAR)
Micrometeorology and biogeochemical cycles
Biosciences
Viikki Plant Science Centre (ViPS)
Ecosystem processes (INAR Forest Sciences)
Source :
Helbig, M, Waddington, J M, Alekseychik, P, Amiro, B, Aurela, M, Barr, A G, Black, T A, Carey, S K, Chen, J, Chi, J, Desai, A R, Dunn, A, Euskirchen, E S, Flanagan, L B, Friborg, T, Garneau, M, Grelle, A, Harder, S, Heliasz, M, Humphreys, E R, Ikawa, H, Isabelle, P, Iwata, H, Jassal, R, Korkiakoski, M, Kurbatova, J, Kutzbach, L, Lapshina, E, Lindroth, A, Löfvenius, M O, Lohila, A, Mammarella, I, Marsh, P, Moore, P A, Maximov, T, Nadeau, D F, Nicholls, E M, Nilsson, M B, Ohta, T, Peichl, M, Petrone, R M, Prokushkin, A, Quinton, W L, Roulet, N, Runkle, B R K, Sonnentag, O, Strachan, I B, Taillardat, P, Tuittila, E, Tuovinen, J, Turner, J, Ueyama, M, Varlagin, A, Vesala, T, Wilmking, M, Zyrianov, V & Schulze, C 2020, ' The biophysical climate mitigation potential of boreal peatlands during the growing season ', Environmental Research Letters, vol. 15, no. 10, 104004 . https://doi.org/10.1088/1748-9326/abab34
Publication Year :
2020

Abstract

Peatlands and forests cover large areas of the boreal biome and are critical for global climate regulation. They also regulate regional climate through heat and water vapour exchange with the atmosphere. Understanding how land-atmosphere interactions in peatlands differ from forests may therefore be crucial for modelling boreal climate system dynamics and for assessing climate benefits of peatland conservation and restoration. To assess the biophysical impacts of peatlands and forests on peak growing season air temperature and humidity, we analysed surface energy fluxes and albedo from 35 peatlands and 37 evergreen needleleaf forests-the dominant boreal forest type-and simulated air temperature and vapour pressure deficit (VPD) over hypothetical homogeneous peatland and forest landscapes. We ran an evapotranspiration model using land surface parameters derived from energy flux observations and coupled an analytical solution for the surface energy balance to an atmospheric boundary layer (ABL) model. We found that peatlands, compared to forests, are characterized by higher growing season albedo, lower aerodynamic conductance, and higher surface conductance for an equivalent VPD. This combination of peatland surface properties results in a similar to 20% decrease in afternoon ABL height, a cooling (from 1.7 to 2.5 degrees C) in afternoon air temperatures, and a decrease in afternoon VPD (from 0.4 to 0.7 kPa) for peatland landscapes compared to forest landscapes. These biophysical climate impacts of peatlands are most pronounced at lower latitudes (similar to 45 degrees N) and decrease toward the northern limit of the boreal biome (similar to 70 degrees N). Thus, boreal peatlands have the potential to mitigate the effect of regional climate warming during the growing season. The biophysical climate mitigation potential of peatlands needs to be accounted for when projecting the future climate of the boreal biome, when assessing the climate benefits of conserving pristine boreal peatlands, and when restoring peatlands that have experienced peatland drainage and mining.

Details

Language :
English
Database :
OpenAIRE
Journal :
Helbig, M, Waddington, J M, Alekseychik, P, Amiro, B, Aurela, M, Barr, A G, Black, T A, Carey, S K, Chen, J, Chi, J, Desai, A R, Dunn, A, Euskirchen, E S, Flanagan, L B, Friborg, T, Garneau, M, Grelle, A, Harder, S, Heliasz, M, Humphreys, E R, Ikawa, H, Isabelle, P, Iwata, H, Jassal, R, Korkiakoski, M, Kurbatova, J, Kutzbach, L, Lapshina, E, Lindroth, A, Löfvenius, M O, Lohila, A, Mammarella, I, Marsh, P, Moore, P A, Maximov, T, Nadeau, D F, Nicholls, E M, Nilsson, M B, Ohta, T, Peichl, M, Petrone, R M, Prokushkin, A, Quinton, W L, Roulet, N, Runkle, B R K, Sonnentag, O, Strachan, I B, Taillardat, P, Tuittila, E, Tuovinen, J, Turner, J, Ueyama, M, Varlagin, A, Vesala, T, Wilmking, M, Zyrianov, V & Schulze, C 2020, ' The biophysical climate mitigation potential of boreal peatlands during the growing season ', Environmental Research Letters, vol. 15, no. 10, 104004 . https://doi.org/10.1088/1748-9326/abab34
Accession number :
edsair.doi.dedup.....9b4e4d6f90f1e5166524799be3fd4394