Back to Search Start Over

The Complexity of Coverability in ν-Petri Nets

Authors :
Ranko Lazić
Sylvain Schmitz
Centre for Discrete Mathematics and its Applications [Warwick] (DIMAP)
University of Warwick [Coventry]
Verification in databases (DAHU)
Laboratoire Spécification et Vérification [Cachan] (LSV)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)-Inria Saclay - Ile de France
Institut National de Recherche en Informatique et en Automatique (Inria)-Institut National de Recherche en Informatique et en Automatique (Inria)
École normale supérieure - Cachan (ENS Cachan)-Centre National de la Recherche Scientifique (CNRS)
EPSRC grant EP/M011801/1
Leverhulme Trust Visiting Professorship VP1-2014-041
ANR-14-CE28-0005,PRODAQ,Systèmes de preuves pour requêtes avec données(2014)
Source :
LICS, LICS 2016-31th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2016-31th Annual ACM/IEEE Symposium on Logic in Computer Science, Jul 2016, New York, United States. pp.467--476, ⟨10.1145/2933575.2933593⟩
Publication Year :
2016
Publisher :
ACM, 2016.

Abstract

We show that the coverability problem in ν-Petri nets is complete for ‘double Ackermann’ time, thus closing an open complexity gap between an Ackermann lower bound and a hyper-Ackermann upper bound. The coverability problem captures the verification of safety properties in this nominal extension of Petri nets with name management and fresh name creation. Our completeness result establishes ν-Petri nets as a model of intermediate power among the formalisms of nets enriched with data, and relies on new algorithmic insights brought by the use of well-quasi-order ideals.Categories and Subject Descriptors F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and Problems

Details

ISBN :
978-1-4503-4391-6
ISBNs :
9781450343916
Database :
OpenAIRE
Journal :
Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer Science
Accession number :
edsair.doi.dedup.....9b8c194331bddf80c52dbc6e90318d11
Full Text :
https://doi.org/10.1145/2933575.2933593