Back to Search
Start Over
Deep Reinforcement Learning for Solving the Heterogeneous Capacitated Vehicle Routing Problem
- Source :
- IEEE Transactions on Cybernetics. 52:13572-13585
- Publication Year :
- 2022
- Publisher :
- Institute of Electrical and Electronics Engineers (IEEE), 2022.
-
Abstract
- Existing deep reinforcement learning (DRL) based methods for solving the capacitated vehicle routing problem (CVRP) intrinsically cope with homogeneous vehicle fleet, in which the fleet is assumed as repetitions of a single vehicle. Hence, their key to construct a solution solely lies in the selection of the next node (customer) to visit excluding the selection of vehicle. However, vehicles in real-world scenarios are likely to be heterogeneous with different characteristics that affect their capacity (or travel speed), rendering existing DRL methods less effective. In this paper, we tackle heterogeneous CVRP (HCVRP), where vehicles are mainly characterized by different capacities. We consider both min-max and min-sum objectives for HCVRP, which aim to minimize the longest or total travel time of the vehicle(s) in the fleet. To solve those problems, we propose a DRL method based on the attention mechanism with a vehicle selection decoder accounting for the heterogeneous fleet constraint and a node selection decoder accounting for the route construction, which learns to construct a solution by automatically selecting both a vehicle and a node for this vehicle at each step. Experimental results based on randomly generated instances show that, with desirable generalization to various problem sizes, our method outperforms the state-of-the-art DRL method and most of the conventional heuristics, and also delivers competitive performance against the state-of-the-art heuristic method, i.e., SISR. Additionally, the results of extended experiments demonstrate that our method is also able to solve CVRPLib instances with satisfactory performance.<br />Comment: This paper has been accepted at IEEE Transactions on Cybernetics
- Subjects :
- Computer Science - Machine Learning
Mathematical optimization
Computer science
Heuristic
Node (networking)
String (computer science)
Computer Science Applications
Rendering (computer graphics)
Human-Computer Interaction
Control and Systems Engineering
Vehicle routing problem
Reinforcement learning
Electrical and Electronic Engineering
Heuristics
Mathematics - Optimization and Control
Software
Selection (genetic algorithm)
Information Systems
Subjects
Details
- ISSN :
- 21682275 and 21682267
- Volume :
- 52
- Database :
- OpenAIRE
- Journal :
- IEEE Transactions on Cybernetics
- Accession number :
- edsair.doi.dedup.....9b9903acd9180f415d0427ea03856959