Back to Search Start Over

Observation of the antiferromagnetic spin Hall effect

Authors :
Hanwen Zhang
Yanhui Chen
Xiaodong Han
Shuyuan Shi
Xianzhe Chen
G. Y. Shi
Hyunsoo Yang
Xiangrong Wang
Desheng Xue
Xiaofeng Zhou
Huaqiang Wu
Ang Li
Shan Jiang
Cheng Song
L. Y. Liao
Yongjian Zhou
Zengwei Zhu
Feng Pan
Xiaolong Fan
Hua Bai
Source :
Nature materials. 20(6)
Publication Year :
2020

Abstract

The discovery of the spin Hall effect1 enabled the efficient generation and manipulation of the spin current. More recently, the magnetic spin Hall effect2,3 was observed in non-collinear antiferromagnets, where the spin conservation is broken due to the non-collinear spin configuration. This provides a unique opportunity to control the spin current and relevant device performance with controllable magnetization. Here, we report a magnetic spin Hall effect in a collinear antiferromagnet, Mn2Au. The spin currents are generated at two spin sublattices with broken spatial symmetry, and the antiparallel antiferromagnetic moments play an important role. Therefore, we term this effect the ‘antiferromagnetic spin Hall effect’. The out-of-plane spins from the antiferromagnetic spin Hall effect are favourable for the efficient switching of perpendicular magnetized devices, which is required for high-density applications. The antiferromagnetic spin Hall effect adds another twist to the atomic-level control of spin currents via the antiferromagnetic spin structure. A magnetic spin Hall effect is reported in the collinear antiferromagnet Mn2Au.

Details

ISSN :
14764660
Volume :
20
Issue :
6
Database :
OpenAIRE
Journal :
Nature materials
Accession number :
edsair.doi.dedup.....9b99c88c5c311ce1e5ce6703f68c4c66