Back to Search Start Over

New examples of dimension zero categories

Authors :
Andrew Gitlin
Source :
Journal of Algebra. 505:271-278
Publication Year :
2018
Publisher :
Elsevier BV, 2018.

Abstract

We say that a category $\mathscr{D}$ is dimension zero over a field $F$ provided that every finitely generated representation of $\mathscr{D}$ over $F$ is finite length. We show that $\textrm{Rel}(R)$, a category that arises naturally from a finite idempotent semiring $R$, is dimension zero over any infinite field. One special case of this result is that $\textrm{Rel}$, the category of finite sets with relations, is dimension zero over any infinite field.<br />Comment: updates for JOA submission

Details

ISSN :
00218693
Volume :
505
Database :
OpenAIRE
Journal :
Journal of Algebra
Accession number :
edsair.doi.dedup.....9b9e241b79463e278e6638a31b00db97
Full Text :
https://doi.org/10.1016/j.jalgebra.2018.03.009