Back to Search
Start Over
New examples of dimension zero categories
- Source :
- Journal of Algebra. 505:271-278
- Publication Year :
- 2018
- Publisher :
- Elsevier BV, 2018.
-
Abstract
- We say that a category $\mathscr{D}$ is dimension zero over a field $F$ provided that every finitely generated representation of $\mathscr{D}$ over $F$ is finite length. We show that $\textrm{Rel}(R)$, a category that arises naturally from a finite idempotent semiring $R$, is dimension zero over any infinite field. One special case of this result is that $\textrm{Rel}$, the category of finite sets with relations, is dimension zero over any infinite field.<br />Comment: updates for JOA submission
- Subjects :
- Discrete mathematics
Algebra and Number Theory
010102 general mathematics
Zero (complex analysis)
Field (mathematics)
01 natural sciences
Semiring
Dimension (vector space)
Mathematics::Category Theory
0103 physical sciences
Idempotence
FOS: Mathematics
Mathematics - Combinatorics
Physics::Atomic Physics
Combinatorics (math.CO)
010307 mathematical physics
Representation Theory (math.RT)
0101 mathematics
Special case
Representation (mathematics)
Finite set
Mathematics - Representation Theory
Mathematics
Subjects
Details
- ISSN :
- 00218693
- Volume :
- 505
- Database :
- OpenAIRE
- Journal :
- Journal of Algebra
- Accession number :
- edsair.doi.dedup.....9b9e241b79463e278e6638a31b00db97
- Full Text :
- https://doi.org/10.1016/j.jalgebra.2018.03.009