Back to Search Start Over

Alterations of Rice (Oryza sativa L.) DNA Methylation Patterns Associated with Gene Expression in Response to Rice Black Streaked Dwarf Virus

Authors :
Zongtao Sun
Hehong Zhang
Junmin Li
Gaojie Hong
Linying Li
Yuqing He
Xueying Zhang
Source :
International Journal of Molecular Sciences, Volume 21, Issue 16, International Journal of Molecular Sciences, Vol 21, Iss 5753, p 5753 (2020)
Publication Year :
2020
Publisher :
Multidisciplinary Digital Publishing Institute, 2020.

Abstract

Rice black-streaked dwarf virus (RBSDV) causes severe yield losses in rice (Oryza sativa L.) in China. Studies have shown that the mechanisms of DNA methylation-mediated plant defense against DNA viruses and RNA viruses are different. However, in rice its function in response to infection of RBSDV, a double-stranded RNA virus, remains unclear. In this study, high-throughput single-base resolution bisulfite sequencing (BS-Seq) was carried out to analyze the distribution pattern and characteristics of cytosine methylation in RBSDV-infected rice. Widespread differences were identified in CG and non-CG contexts between the RBSDV-infected and RBSDV-free rice. We identified a large number of differentially methylated regions (DMRs) along the genome of RBSDV-infected rice. Additionally, the transcriptome sequencing analysis obtained 1119 differentially expressed genes (DEGs). Correlation analysis of DMRs-related genes (DMGs) and DEGs filtered 102 genes with positive correlation and 71 genes with negative correlation between methylation level at promoter regions and gene expression. Key genes associated with maintaining DNA methylation in rice were analyzed by RT-qPCR and indicated that OsDMT702 might be responsible for the global increase of DNA methylation level in rice under RBSDV stress. Our results suggest important roles of rice DNA methylation in response to RBSDV and provide potential target genes for rice antiviral immunity.

Details

Language :
English
ISSN :
14220067
Database :
OpenAIRE
Journal :
International Journal of Molecular Sciences
Accession number :
edsair.doi.dedup.....9bd5408e8868c7f1f61773d2039b6db6
Full Text :
https://doi.org/10.3390/ijms21165753